RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
  Cataract
  Cornea
  Retina
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Ophthalmology Channel

subscribe to Ophthalmology newsletter
Latest Research : Ophthalmology

   EMAIL   |   PRINT
Choroideremia- fault in the retinal pigment epithelium

Mar 7, 2007 - 6:19:25 PM , Reviewed by: Dr. Sanjukta Acharya
"If you disrupt protein transport, you kill the cell," Perkins notes. "In this case, the transportation process in the photoreceptors was perfectly normal, but the neighboring RPE was defective, which is why the photoreceptors were dying."

Key Points of this article
Choroideremia is an X-linked recessive retinal degenerative disease which features degeneration of the choriocapillaris, the retinal pigment epithelium, and the photoreceptor of the eye.
It presents initially as night blindness in young men.
This study has paved the way for a possible cure by resolving the issue of the cause..
 
[RxPG] Researchers at Texas A&M University are shedding light on a rare form of early blindness, identifying the cells involved and paving the way for possible therapies to treat or even prevent what is currently an incurable disease.

The findings, funded by Fight for Sight and the National Institutes of Health, are published in the March 5-9 online Early Edition (EE) of the Proceedings of the National Academy of Sciences.

Since his post-doctoral days at Harvard University, Texas A&M biologist Dr. Brian Perkins has been studying protein transport within photoreceptors—the rod and cone cells that allow organisms to detect their visual worlds—in zebrafish, a vertebrate whose eye physiology is essentially identical to that of a human. Recently he became intrigued by a 30-year-old debate involving photoreceptor death—specifically, whether it was a cause or an effect—in choroideremia, an X chromosome-linked hereditary retinal degenerative disease that leads to blindness in an estimated one in every 100,000 people, beginning with severe loss of vision and night blindness as early as the pre-teen years and progressing to complete blindness by middle age.

Using a line of mutant zebrafish developed by Rockefeller University’s Jim Hudspeth, Perkins and Texas A&M biology graduate student Bryan Krock zeroed in on a specific protein, the Rab escort protein-1 (REP1), which helps regulate intracellular traffic in the photoreceptors as well as a neighboring tissue called the retinal pigment epithelium (RPE). In collaboration with the University of Western Kentucky’s Joseph Bilotta, they observed that mutations in REP1 disrupt cellular processes in the RPE, causing photoreceptor death as a secondary consequence. Their results suggest therapies that correcting the RPE may successfully rescue photoreceptor loss in choroideremia and even reverse the disease.

"For decades, no one knew if the photoreceptors were dying because of an internal trafficking defect or if they were dying as a secondary consequence of problems in the RPE," Perkins explains. "Previous research based on studies of human tissue said it was independent of the RPE. We wanted to see if that hypothesis was true. It turns out that it wasn’t, but in making the wrong assumption, we found out something even more interesting—a different way to cause photoreceptor death."

"If you disrupt protein transport, you kill the cell," Perkins notes. "In this case, the transportation process in the photoreceptors was perfectly normal, but the neighboring RPE was defective, which is why the photoreceptors were dying."

"For this particular disease, we now have the reason why people go blind. If our results translate into treating humans, it should lead to design of potential therapies. But at the very least, it helped settle the controversy of why photoreceptors are failing and why people go blind. Knowing the right cell type to target is half the battle, and we’re saying it’s the RPE, not the photoreceptor, and that the functional gene can potentially be added back to the RPE using gene therapy."

In addition to being small, relatively inexpensive and suitable for large-scale genetic experiments, zebrafish make ideal research specimens in Perkins’ eyes because they are model systems, both for treating human disease and for determining what’s important.

"Most people think of mice, monkeys and other furry animals, rather than fish, when they think of research subjects for human diseases," Perkins says. "An advantage of zebrafish is the ability to inexpensively perform forward genetic screens. Using chemicals, we can induce random mutations throughout the genome. We then search through dozens of zebrafish families to identify mutant zebrafish with traits that resemble human diseases. We use the screen to look for specific traits we think are important, but we can’t pre-select the gene that caused it."

"Rather than starting with a gene to mutate and hoping to generate a given trait, we select for the trait, then go find the mutated gene that caused it. We let nature and the organism tell us what’s important and what’s not."

Perkins says the next steps for his laboratory involve continuing investigation into protein transport processes and trying to find additional zebrafish models of photoreceptor-specific mutations that lead to additional causes of retinal degeneration and blindness.




Publication: Online Early Edition (EE) of the Proceedings of the National Academy of Sciences

Funding information and declaration of competing interests: Funded by Fight for Sight and the National Institutes of Health

Advertise in this space for $10 per month. Contact us today.


Related Ophthalmology News
Simple blood or urine test to identify blinding disease
Breakthrough camera to improve detection of blinding eye disease and diabetes
Mayo Clinic researchers stop neuromyelitis optica attacks with new therapy
Patent issued for technology that improves eyesight dramatically
Mass. Eye and Ear, Joslin Diabetes announce collaboration in eye care
UCSC physicist Alexander Sher named Pew Scholar in the Biomedical Sciences
Wayne State University researcher examines protein's role in diabetic retinopathy
Bascom Palmer Eye Institute announces breakthrough for degenerative vision disorder
KalVista and JDRF form research partnership for novel treatment of diabetic eye disease
AMD-like lesions delayed in mice fed lower glycemic index diet

Subscribe to Ophthalmology Newsletter

Enter your email address:


 About Dr. Sanjukta Acharya
This news story has been reviewed by Dr. Sanjukta Acharya before its publication on RxPG News website. Dr. Sanjukta Acharya, MBBS is the chief editor for RxPG News website. She oversees all the medical news submissions and manages the medicine section of the website. She has a special interest in diabetes and endocrinology.
RxPG News is committed to promotion and implementation of Evidence Based Medical Journalism in all channels of mass media including internet.
 Additional information about the news article
"Non-Cell Autonomous Photoreceptor Degeneration in a Zebrafish Model of Choroideremia," - the article, published in the March 5-9 online Early Edition (EE) of the Proceedings of the National Academy of Sciences, can be accessed at http://www.pnas.org/cgi/content/abstract/0605818104v1

 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)