RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
  Reproduction
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Reproduction Channel

subscribe to Reproduction newsletter
Special Topics : Evolution : Reproduction

   EMAIL   |   PRINT
Why Does Sex Exist?

Aug 7, 2006 - 1:51:00 PM , Reviewed by: Priya Saxena
While the recent models assumed that host–parasite encounters are random, Agrawal shows that when nonrandom interactions are assumed—so that a host is more likely to acquire parasites from its mother—selective pressures from parasites are much more likely to favor sex.

 
[RxPG] Why does sex exist? A long-popular view holds that sexual reproduction creates new gene combinations that help the next generation resist rapidly co-evolving parasites. Each species constantly changes to achieve the same result—evolutionary advantage—prompting evolutionary biologists to dub this hypothesis the Red Queen (who tells Alice in Through the Looking Glass “it takes all the running you can do, to keep in the same place”).

Recent theoretical studies have challenged the generality of the Red Queen hypothesis, suggesting that even though parasites can exert selection pressures that favor sex under some conditions, more often they select against it. They do this, the studies found, by selecting against genes that increase the degree of genetic mixing. And now, Aneil Agrawal has come to the Red Queen's rescue with his own theoretical analysis. While the recent models assumed that host–parasite encounters are random, Agrawal shows that when nonrandom interactions are assumed—so that a host is more likely to acquire parasites from its mother—selective pressures from parasites are much more likely to favor sex.

In theoretical models that assume random host–parasite interactions, the host's fitness depends only on its own genetic makeup (or genotype), a scenario called genotypic selection. If the host stands a reasonable chance (above what would be expected to occur randomly) of contracting infection from its mother, host fitness will also depend on the host's genetic similarity to its mother (called similarity selection).

Agrawal's model allows an individual host's fitness to depend both on its own genotype and on its similarity to its mother's genotype. This framework can describe selection by parasites that are encountered randomly or are transmitted by the mother. Risk of maternal transmission will be high when parasites pass directly from mother to offspring through her eggs. The likelihood of transmission will diminish if offspring acquire infection after dispersal. Offspring that have the same genotype as their mother will be more susceptible to parasites from their mother than those with different genes. Thus, Agrawal explains, to the extent that maternal transmission occurs, hosts will be subject to both genotypic and similarity selection.

If the Red Queen hypothesis is true, and host–parasite co-evolution underlies the evolution and maintenance of sex, then these species interactions should create links between gene variants (or alleles) that enhance genetic mixing and alleles related to fitness. (The alleles that influence genetic mixing are called modifier alleles, because they influence the degree of investment into sexual rather than asexual reproduction.)
Why Does Sex Exist?
The Red Queen hypothesis posits that sex allows hosts to evade co-evolving parasites. (Photo: William F. Duffy)

Agrawal first determined how a modifier allele evolves under different scenarios involving genotypic and similarity selection. He then evaluated the extent of genotypic and similarity selection produced by host–parasite co-evolution, and showed how the likelihood of maternal transmission affects whether parasites select for or against sex. He found that even though similarity selection has a much weaker effect than genotypic selection on fitness, it can exert a powerful force on the evolution of modifier alleles (and thus sex). Even a small chance of maternal transmission can lead to parasite selection for sex, Agrawal explains, because similarity selection affects genetic associations between mother and offspring, which tend to be strong (as opposed to genetic associations within offspring, which tend to be weaker).

Previous models have shown that sex is favored under very limited conditions in large, randomly breeding populations because genetic mixing tends to break down beneficial gene combinations produced by selection, which presumably enhance fitness. By incorporating the fitness effects of similarity selection, Agrawal could examine similarity selection's potential impacts on the evolution of modifier alleles independent of its fitness effects—and discover that parasites are “much more likely to favor sex.” The model predicts that this is most likely to occur when parasites are directly transmitted from mother to offspring, virulence is low, and infection rates are high (otherwise, too few offspring are produced by infected mothers).

While Agrawal doesn't argue that parasites fully explain why sex evolved, his results show that accounting for real-world transmission scenarios puts the ball squarely back in the Red Queen's court. Researchers can use his model to study the evolution of sex under a wide range of scenarios, such as when individual fitness depends on kin or other social groups.



Publication: Gross L (2006) The Red Queen Gets a New Lease on Life. PLoS Biol 4(8): e285
On the web: Read Research Article at PLoS Biology 

Advertise in this space for $10 per month. Contact us today.


Related Reproduction News
Artificial human sperm could make men redundant: experts
Is Sex Necessary for Evolution?
Infection Status Drives Interspecies Mating Choices in Fruit Fly Females
Why Does Sex Exist?
Declining Human Fertility is Evolutionary Adaptation
Genetic quality of sperm worsens as men get older
Songbirds boost size of eggs when hearing sexy song
Fish have menopause, study determines
Dancing ability determines mate quality
How sense of smell affects mating and aggression

Subscribe to Reproduction Newsletter

Enter your email address:


 Additional information about the news article
Written by Liza Gross

DOI: 10.1371/journal.pbio.0040285

Published: August 1, 2006

Copyright: © 2006 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License. PLoS Biology is an open-access journal published by the nonprofit organization Public Library of Science.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)