RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
  Dementia
   Alzheimer's
  Parkinson's
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Alzheimer's Channel

subscribe to Alzheimer's newsletter
Latest Research : Aging : Dementia : Alzheimer's

   EMAIL   |   PRINT
Enhanced mental and physical activity slows neurological decline

Jul 24, 2006 - 6:54:00 PM , Reviewed by: Priya Saxena
These data provide strong evidence that an environment rich in mental and physical stimulation slows the progression of Alzheimer-like brain pathology.

 
[RxPG] Researchers have uncovered the pathways behind the protection offered by environmental stimulation in Alzheimer's disease, further confirming that enhanced mental and physical activity slows neurological decline. The paper by Ambrée et al., "Reduction of amyloid angiopathy and A-Beta plaque burden after enriched housing in TgCRND8 mice: involvement of multiple pathways," appears in the August issue of The American Journal of Pathology.

Alzheimer's disease, the leading cause of senile dementia, presents with cognitive and behavioral deficiencies resulting in part from accumulation of ?-amyloid (A-Beta) deposits within the brain (A-Beta plaques) and its blood vessels (amyloid angiopathy). Although previous studies have shown that increased mental and physical activity can slow the progression of the disease, how such deceleration occurs has been unclear until now.

Dr. Kathy Keyvani's group at University Hospital Muenster examined the effects of environmental stimulation on the brain pathology of TgCRND8 mice. These mice, which express a mutant form of A-Beta found in some Alzheimer's patients, develop Alzheimer-like features including A-Beta plaques and cognitive deficits. To study the effects of enrichment, mice were housed in either standard cages or enriched cages, similar to the standard but with access to a stimulus cage containing permanent fixtures (rope and gnawing wood) as well as removable items (tunnels, balls, ladders, ramps, and exercise wheels) that were changed on a rotating basis.

Following five months of standard versus enriched housing, mouse brains were examined for signs of disease. Mice housed in the enriched environment had fewer A-Beta plaques, smaller plaque size, and reduced amyloid angiopathy compared to mice housed in standard cages. Interestingly, there were no differences in the levels of soluble A-Beta peptide or the transcriptional/translational expression levels of its precursor protein (APP) or the processing of APP between the two groups. So how did environmental stimulation prevent disease?

To answer this question, Ambrée et al. performed DNA microarray analysis to determine which genes were differentially regulated in mice housed in the enriched environment compared to standard cages. Enriched mice exhibited down-regulation of pro-inflammatory genes but up-regulation of genes related to anti-inflammatory processes, protein degradation and cholesterol binding. These results were confirmed by specifically analyzing gene expression for examples in each category. Together these data suggest that an enriched environment elicits protection via pathways that prevent A-Beta accumulation and enhance its clearance.

The authors speculate that the altered expression of inflammatory genes may shift the immune response from one that is neurotoxic to one that is phagocytic, i.e., able to clear unwanted debris, such as A-Beta. In accordance with this, a significant enhancement of microglial activity was found by Western blot and morphometric analyses of microglia, which often surround and infiltrate A-Beta plaques. In addition, activating cellular protein degradation pathways provides another means of removing excess A-Beta. Finally, changes in cholesterol homeostasis, elements of which have been shown to correlate with A-Beta deposition, may exert beneficial effects by preventing plaque formation in the first place.

These data provide strong evidence that an environment rich in mental and physical stimulation slows the progression of Alzheimer-like brain pathology. Further investigation of the pathways and individual elements involved in such protection may provide novel treatment strategies for Alzheimer's disease. Until that time, keep your running shoes and crossword puzzles handy.



Publication: Ambrée O, Leimer U, Herring A, Görtz N, Sachser N, Heneka MT, Paulus W, Keyvani K. Reduction of amyloid angiopathy and Aβ plaque burden after enriched housing in TgCRND8 mice: involvement of multiple pathways. Am J Pathol 2006 169:544-552
On the web: ajp.amjpathol.org 

Advertise in this space for $10 per month. Contact us today.


Related Alzheimer's News


Subscribe to Alzheimer's Newsletter

Enter your email address:


 Additional information about the news article
This work was supported by grants from Innovative Medical Research and German National Academic Foundation.

Work was directed by Dr. Kathy Keyvani of University Hospital Muenster and involved collaborators at University of Muenster.

The American Journal of Pathology, the official journal of the American Society for Investigative Pathology (ASIP), seeks to publish high-quality original papers on the cellular and molecular mechanisms of disease. The editors accept manuscripts which report important findings on disease pathogenesis or basic biological mechanisms that relate to disease, without preference for a specific method of analysis. High priority is given to studies on human disease and relevant experimental models using cellular, molecular, biological, animal, chemical and immunological approaches in conjunction with morphology.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)