RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
  Dementia
   Alzheimer's
  Parkinson's
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Alzheimer's Channel

subscribe to Alzheimer's newsletter
Latest Research : Aging : Dementia : Alzheimer's

   EMAIL   |   PRINT
Measuring Proteins In Spinal Fluid May Provide Early Clue To Alzheimer's Disease

Jul 12, 2006 - 5:37:00 AM , Reviewed by: Venkat Yelamanchili
"Therapeutic strategies aimed at prevention of Alzheimer's disease may need to be applied in early midlife or even younger ages to have maximal effect on amyloid deposition. Primary prevention trials for Alzheimer's disease targeting elderly persons may be too late to affect the early stages of disease pathology."

 
[RxPG] Early signs of the development of Alzheimer's disease can be seen in the cerebrospinal fluid of middle-aged adults who are genetically predisposed to the neurologic condition, according to a report in the July issue of the Archives of Neurology, one of the JAMA/Archives journals.

The two strongest risk factors for Alzheimer's disease are aging and the presence of an allele (type of gene) known as apolipoprotein E*4 (APOE*4), according to background information in the article. Those with the APOE*4 allele develop clinical dementia about 10 to 15 years earlier than those who do not have the APOE*4 allele. Previous studies have shown that the plaques that form in the brain during Alzheimer's disease, which are made of proteins known as beta-amyloids, begin forming years before affected individuals experience any symptoms of the disease. As beta-amyloid proteins, predominately of a type known as Abeta42, clump together, fewer are available to circulate through the nervous system. Therefore, lower levels of the Abeta42 in the cerebrospinal fluid surrounding the brain and spinal cord serve as biomarkers or chemical indicators of the development of Alzheimer's disease.

Elaine R. Peskind, M.D., VA Puget Sound Health Care System and University of Washington School of Medicine, Seattle, and colleagues estimated the combined effect of aging and the APOE*4 allele on levels of Abeta42 and another beta-amyloid, Abeta40, in 184 adults (94 men and 90 women, average age 50 years). The participants underwent clinical and laboratory screening and were found to be cognitively normal-that is, they had no difficulties with thinking, learning or memory. Researchers took samples of cerebrospinal fluid in the morning after an overnight fast and measured participants' Abeta42 and Abeta40 levels in addition to determining whether each individual had the APOE*4 allele.

Those who were older and who had the APOE*4 allele were more likely to have lower levels of Abeta42. For those who did not have the APOE*4 allele, Abeta42 levels rose slightly until about age 50 years then begin to decline slowly. On the other hand, those with the APOE*4 allele experienced a slight decline in Abeta42 in their younger years and then a dramatic drop between ages 50 and 60 years. Levels of Abeta42 were not associated with scores on any cognitive or memory tests. "In persons with the APOE*4 allele, decline in cerebrospinal fluid Abeta42 concentration possibly begins in young adulthood, followed by marked acceleration of this decline beginning in midlife-decades before clinical manifestations of Alzheimer's disease," the authors write. The same relationship did not hold true for Abeta40, which, although it is also found in amyloid plaques, is less prevalent there than Abeta42; levels of Abeta40 did not change with age in those with the APOE*4 allele and decreased with age in those without the APOE*4 allele.

"These findings have implications for the preclinical diagnosis of Alzheimer's disease, as well as for treatment," the authors conclude. "Therapeutic strategies aimed at prevention of Alzheimer's disease may need to be applied in early midlife or even younger ages to have maximal effect on amyloid deposition. Primary prevention trials for Alzheimer's disease targeting elderly persons may be too late to affect the early stages of disease pathology."



Publication: July issue of the Archives of Neurology
On the web: Arch Neurol. 2006;63:936-939 

Advertise in this space for $10 per month. Contact us today.


Related Alzheimer's News


Subscribe to Alzheimer's Newsletter

Enter your email address:


 Additional information about the news article
This study was supported by grants from the U.S. National Institute on Aging; the National Alzheimer's Coordinating Center; Friends of Alzheimer's Research; Alzheimer's Association of Western and Central Washington; and the Department of Veterans Affairs.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)