RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
  AIDS
  Anthrax
  Dengue
  Ebola
  HCV
  Influenza
  Leishmaniasis
  Malaria
  MRSA
  Mumps
  Pertussis
  Prion Diseases
  SARS
  Shigella
  Small Pox
  Tuberculosis
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Anthrax Channel

subscribe to Anthrax newsletter
Latest Research : Infectious Diseases : Anthrax

   EMAIL   |   PRINT
Protective Antigen Ion Channel Asymmetric Blockade To Detect Anthrax Infection

Aug 29, 2005 - 10:04:00 PM
"We hope this system will lead to a method for rapidly screening agents that inhibit the binding of LF or EF to these pores," says NIST's lead investigator John Kasianowicz.

 
[RxPG] A new laboratory method for quickly detecting active anthrax proteins within an infected blood sample at extremely low levels has been developed by researchers at the National Institute of Standards and Technology (NIST), the U.S. Army Medical Research Institute of Infectious Diseases and the National Cancer Institute.

Current detection methods rely on injecting live animals or cell cultures with samples for analysis and require up to several days before results are available. Described* in an upcoming issue of the Journal of Biological Chemistry, the new method produces unambiguous results in about an hour. The researchers hope the system will ultimately be useful in developing fast, reliable ways to diagnose anthrax infections or to quickly screen large numbers of drugs as possible therapies for blocking the bacteria's toxic effects.

The method works by detecting changes in current flow when anthrax proteins are present in a solution. An anthrax protein ironically called "protective antigen" spontaneously forms nanometer-scale pores that penetrate the surface of an organic membrane. When a voltage is applied across the membrane, positively and negatively charged ions flow freely in both directions through the pore. When additional anthrax proteins called lethal factor (LF) or edema factor (EF) are present, however, the proteins bind to the outside of the pore and shut down the flow of ions in one direction. This change in current flow depends on the concentration of the proteins in the solution and can detect amounts as low as 10 picomolar (trillionths of a mole).

"We hope this system will lead to a method for rapidly screening agents that inhibit the binding of LF or EF to these pores," says NIST's lead investigator John Kasianowicz.

Protective Antigen Ion Channel Asymmetric Blockade To Detect Anthrax Infection
A computer model shows side and top views of two different proteins produced by anthrax bacteria. The green molecule is "protective antigen" (PA), which spontaneously forms pores that penetrate organic membranes such as cell walls. The yellow molecule is "lethal factor (LF)." When a voltage is applied across a membrane studded with PA pores, both positive and negative ions flow through. Once LF binds to the pore, however, current only flows in one direction. Image credit: T. Nguyen, National Cancer Institute


Live anthrax antibodies seem to do exactly that. When antibodies were present in the test solution and then LF was added, the current flow remained unchanged, indicating that the anthrax proteins were unable to bind properly. The long-term goal would be to find drugs with few side effects that also interfere with this binding process.



Publication: K.M. Halverson, R.G. Panchal, T. Nguyen, R. Gussio, S.F. Little, M. Misakian, S. Bavari and J.J. Kasianowicz, "Anthrax Biosensor: Protective Antigen Ion Channel Asymmetric Blockade," Journal of Biological Chemistry, slated for a November issue, posted online Aug. 8, 2005.
On the web: National Institute of Standards and Technology (NIST) 

Advertise in this space for $10 per month. Contact us today.


Related Anthrax News
Monoclonal antibody recognizes a specific sugar on the surface of anthrax bacteria spores
Scientists design functionalized liposome - a potent anthrax toxin inhibitor
PlyPH protein kills anthrax bacteria by exploding their cell walls
Surprising new insights about the acid pH levels required for anthrax toxin
Diagnostic method for identifying Bacillus anthracis receives FDA approval
Protective Antigen Ion Channel Asymmetric Blockade To Detect Anthrax Infection
ABthrax(TM) Safe and Effective against Anthrax
DNI - Newly Identified Inhibitor of Anthrax Toxin May Contribute to Postexposure Therapy

Subscribe to Anthrax Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)