RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
  Adrenergics
  Analgesics
  Anti Cancer Drugs
  Anti-Clotting Drugs
  Anti-Inflammatory
  Antibiotics
   Sirolimus
   Tigecycline
  Anticholesterol
  Antihypertensives
  Antivirals
  Fatty Acids
  Hypnotics
  Metals
  PPI
  Surfactants
  Varenicline
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Research Article
Antibiotics Channel

subscribe to Antibiotics newsletter
Latest Research : Pharmacology : Antibiotics

   EMAIL   |   PRINT
Study on spread of antibiotic resistance between bacteria

Jan 10, 2009 - 9:25:41 AM , Reviewed by: Dr. Sanjukta Acharya

 
[RxPG] Scientists have identified the structure of a key component of the bacteria behind such diseases as whooping cough, peptic stomach ulcers and Legionnaires' disease. The research, funded by the Wellcome Trust and the Biotechnology and Biological Sciences Research Council (BBSRC), sheds light on how antibiotic resistance genes spread from one bacterium to another. The research may help scientists develop novel treatments for these diseases and novel ways to curtail the spread of antibiotic resistance.

Antibiotic resistance spreads when genetic material is exchanged between two bacteria, one of which has mutated to be resistant to the drugs. This exchange is facilitated by a multi-component device known as a type IV secretion system, which acts to transport antibiotic resistance genes from within one cell, through its membrane and into a neighbouring cell.

Type IV secretion systems also play an essential role in transporting toxins or proteins from within bacteria into the cells of the body, causing diseases. Examples of Gram-negative bacterial pathogens using such a device are Helicobacter pylori (which causes peptic ulcers), Legionella pneumophila (which causes Legionnaires' disease), and Bordetella pertussis (which causes whooping cough).

Now, in a paper published in the journal Science, scientists from the Institute of Structural and Molecular Biology (ISMB) at Birkbeck, University of London, and UCL (University College London) describe the structure of the core complex of a type IV secretion system, viewed using cryoelectron microscopy (a form of electron microscopy where the sample is studied at very low temperatures).

"Type IV secretion systems play key roles in secreting toxins which give certain bacteria their disease-causing properties and, importantly, are also directly involved in the spread of antibiotic resistance," says Professor Gabriel Waksman, Director of the ISMB and lead author of the study. "This is why they have become obvious targets in the vast effort required to fight infectious diseases caused by bacteria."

Gram-negative bacteria have a double membrane. At the core of the type IV secretion system is a double-walled chamber which spans the two membranes and opens at one side. Dr Waksman believes this chamber may offer a new pathway for targeting these bacteria.

"If we can inhibit the secretion systems that mediate transfer of antibiotic resistance genes from one bacterial pathogen to another, we could potentially prevent the spread of antibiotic resistance genes," he says. "For those pathogens that use type IV secretion system for secretion of toxins, the system can be targeted directly for inhibition. In both cases, this would have a considerable impact on public health."

Type IV secretion systems were first discovered in Agrobacterium tumefaciens, which uses the system to transfer tumour-inducing DNA into plants, causing "crown gall", which can be devastating to crops such as grape vines, sugar beet and rhubarb. However, crop scientists have been able to successfully exploit this transfer system as a way of introducing new genes into industrial crops, conferring herbicide-resistance and resistance to pathogens.




Advertise in this space for $10 per month. Contact us today.


Related Antibiotics News
Nanostructures lend cutting edge to antibiotics
Inhibition of protein HipA pevents cell dormancy and bacterial persistence
Study on spread of antibiotic resistance between bacteria
Two-component lantibiotic with therapeutic potential discovered
Antibiotic inhibits cancer gene activity
Rapamycin shown to inhibit angiogenesis
Tigecycline, world’s first glycylcycline expanded broad-spectrum antibiotic, launched in UK
FDA Warns of Liver Failure With Telithromycin
What is the optimal duration of antibiotic therapy?
Should children with suspected meningitis be given antibiotics before transfer to hospital?

Subscribe to Antibiotics Newsletter

Enter your email address:


 About Dr. Sanjukta Acharya
This news story has been reviewed by Dr. Sanjukta Acharya before its publication on RxPG News website. Dr. Sanjukta Acharya, MBBS MRCP is the chief editor for RxPG News website. She oversees all the medical news submissions and manages the medicine section of the website. She has a special interest in nephrology. She can be reached for corrections and feedback at [email protected]
RxPG News is committed to promotion and implementation of Evidence Based Medical Journalism in all channels of mass media including internet.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)