XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
  Virology
   West Nile Virus
  Bacteriology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Virology Channel
subscribe to Virology newsletter

Latest Research : Microbiology : Virology

   DISCUSS   |   EMAIL   |   PRINT
How Nipah and Hendra viruses gain entry into cells
Jul 7, 2005, 18:05, Reviewed by: Dr.

Using different methods, both teams identified a specific cell surface receptor, Ephrin-B2, as the doorway used by Nipah and Hendra viruses to get inside cells. This receptor is found on cells in the central nervous system and those lining blood vessels. It is crucial for the normal development of the nervous system and the growth of blood vessels in human and other animal embryos. Ephrin-B2 is found in humans, horses, pigs, bats and other mammals, which explains the unusually broad range of species susceptible to Nipah and Hendra virus infection.

 
Working independently, two research teams funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), have identified how Nipah and Hendra viruses, closely related viruses first identified in the mid-1990s, gain entry into human and animal cells.

Nipah and Hendra are emerging viruses that cause serious respiratory and neurological disease. People can acquire these deadly viruses from animals. Beginning in 1994, public health officials have recognized disease outbreaks in Malaysia, Singapore, Bangladesh and Australia.

Both viruses use a protein essential to embryonic development to enter cells and begin their often-fatal attack, report researchers at the University of California, Los Angeles (UCLA) and the Uniformed Services University of the Health Sciences (USUHS) in Bethesda, MD.

The UCLA team, headed by Benhur Lee, M.D., describes its findings in a Nature paper posted online on July 6. The report by the USUHS researchers, led by Christopher Broder, Ph.D., is appearing online the week of July 4 in the Proceedings of the National Academy of Sciences.

The first reported outbreak of Nipah virus occurred in 1998-1999 in Malaysia, sickening 265 people and killing 105, according to the World Health Organization. This outbreak, which in this case spread from pigs to humans, was contained by culling more than a million pigs. Hendra virus, so far less of a threat to human health, was first identified in 1994 in Australia when it spread from horses to humans.

"In addition to our concern about Nipah and Hendra viruses as emerging global health and economic threats, we worry about their potential use as bioterror agents," says Anthony S. Fauci, M.D., director of NIAID. "This work, funded through our biodefense research program, is a major step towards developing countermeasures to prevent and treat Nipah and Hendra infection."

Using different methods, both teams identified a specific cell surface receptor, Ephrin-B2, as the doorway used by Nipah and Hendra viruses to get inside cells. This receptor is found on cells in the central nervous system and those lining blood vessels. It is crucial for the normal development of the nervous system and the growth of blood vessels in human and other animal embryos. Ephrin-B2 is found in humans, horses, pigs, bats and other mammals, which explains the unusually broad range of species susceptible to Nipah and Hendra virus infection.

Dr. Broder and his colleagues collaborated with researchers at the National Cancer Institute, also part of the NIH, and the Australian Animal Health Laboratory. The team narrowed the search for the Nipah/Hendra receptor by first sifting through the genetic sequences of 55,000 possible receptors using microarray technology as a molecular sieve.

The scientists compared microarray signals from the 55,000 genetic sequences in one set of Nipah virus-resistant human cells with microarray signals from three sets of human cells that the virus can infect. This enabled the research team to narrow the possible number of receptor proteins to 120 by identifying those present in the virus-susceptible cells but absent in the virus-resistant cells. They winnowed the possibilities further--to just 21--by selecting only those candidate receptors within the molecular weight range they expected. They selected 10 expressed at high levels in the susceptible cell lines and inserted them, one by one, into the cells that resisted Nipah virus to identify the receptor. When they inserted the gene for Ephrin-B2, the previously Nipah-resistant cells admitted the virus.

The UCLA team, with collaborators at the University of Pennsylvania, Philadelphia, took a different approach, using tools of advanced molecular biology as well as old-fashioned detective work to identify the Ephrin-B2 receptor. They knew the receptor would be abundant among the type of cells Nipah virus attacks, specifically, nerve cells and cells lining blood vessels.

To identify the human cell receptor, they created a bait: the Nipah protein that docks to the unknown receptor was attached to part of a human antibody, like a worm on a fishing hook. When they placed this bait onto cells susceptible to Nipah virus infection, it attached to a protein on the cell surface. When placed on Nipah-resistant cells, however, the antibody did not attach to the cells. The scientists used an instrument that sorts molecules by weight to identify that Ephrin-B2 was the cell receptor protein that bound to the antibody/Nipah protein "fishing pole" they had made.

They wanted to confirm their findings, but since they did not have access to a high-level biosafety laboratory as Dr. Broder's team did, the UCLA researchers engineered a harmless virus with Nipah virus proteins embedded in its coat. The UCLA team found that this artificial construct could infect cells vulnerable to Nipah virus but was unable to infect Nipah virus-resistant cells. They also showed that this engineered virus could infect nerve cells and cells lining blood vessels using Ephrin-B2 as the receptor, in the same way as actual Nipah virus would infect these cells.

Knowing the identity of the Nipah and Hendra receptor will not only help in developing vaccines and treatments, but also promises to lead to better understanding of how the viruses cause disease in people and a variety of animals, the researchers say.
 

- MI Bonaparte et al. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proceedings of the National Academy of Sciences 102 (2005) doi:10.1073/pnas/0504887102; OA Negrete et al. Ephrin B2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature (2005) doi:10.1038/nature03838.
 

www.niaid.nih.gov

 
Subscribe to Virology Newsletter
E-mail Address:

 

NIAID is a component of the National Institutes of Health, an agency of the U.S. Department of Health and Human Services. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on transplantation and immune-related illnesses, including autoimmune disorders, asthma and allergies.

Related Virology News

How West Nile virus evades immune defenses
Innovative method for creating a human cytomegalovirus vaccine outlined
Cracking Virus Protection Shield
Viruses trade-off between survival and reproduction
New hybrid virus provides targeted molecular imaging of cancer
Mass spectrometry to detect norovirus particles
xCT molecule is a major gateway for KSHV to enter human cells
Surprising discovery about the inner workings of vesicular stomatitis virus (VSV)
New human retrovirus - Xenotropic MuLV-related virus (XMRV)
Viruses can be forced to evolve as better delivery vehicles for gene therapy


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us