XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
  Virology
  Bacteriology
   Salmonella
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Bacteriology Channel
subscribe to Bacteriology newsletter

Latest Research : Microbiology : Bacteriology

   DISCUSS   |   EMAIL   |   PRINT
The Bacteria’s Guide to Survival
Mar 22, 2005, 20:51, Reviewed by: Dr.

By comparing cells infected with normal N. gonorrhoeae to those infected with a mutant strain with defective pili, the researchers found a subset of 52 host genes that had higher activity when the host was infected with the normal bacteria, suggesting that the pulls of the pili were responsible.

 
From The Worst Case Scenario Survival Handbook—with handy entries like “How to escape from killer bees” and “How to escape from quicksand”—to The Zombie Survival Guide: Complete Protection from the Living Dead, survival guides are one of the latest publishing fads.

If there was a market for it, a survival guide for bacteria might include topics like “How to use your pili to keep your host from going apoptotic.” A host’s cells can respond to a bacterial infection with apoptosis, or programmed cell death. For bacteria that pass directly from host to host, this can pose a problem. If the bacteria are highly virulent and induce too much cell death, they could take down their host before they’re able to jump ship, thus hurting the bacteria’s chances of survival in the long run.

Earlier studies suggested that bacteria can use their pili, finger-like appendages that many bear on their surface, to pull on a host’s cell membranes and thus influence the cell’s behavior. But these studies, which looked at mutant bacteria that could not retract their pili, did not examine the matter of how the bacteria coax their hosts to stay alive.

Now, in PLoS Biology, a group of researchers present more direct evidence that bacteria can induce changes in hosts’ gene expression—and possibly keep the host cells alive longer—through tiny tugs on cell membranes. The study, led by Magdalene So, examined gene activity in human epithelial cells infected with Neisseria gonorrhoeae, the bacteria responsible for the sexually transmitted disease gonorrhea.

By comparing cells infected with normal N. gonorrhoeae to those infected with a mutant strain with defective pili, the researchers found a subset of 52 host genes that had higher activity when the host was infected with the normal bacteria, suggesting that the pulls of the pili were responsible. They also ran a key control experiment with an artificial mechanical pull on the host cell membrane. By coating magnetic beads with a preparation of bacterial pili, the beads attached themselves to the cell membranes. Then, in the presence of a magnetic field, the beads tugged on the cell membrane, approximating the effects on gene expression during infection with normal bacteria.

Thus, the mechanical tugs seem responsible for triggering a signaling cascade in the host cells, which ultimately affects the host’s gene expression. Many of the genes that increased in activity due to the tugs were already known to regulate apoptosis and cellular response to stress, including mechanical strain on the membrane. Also, a majority of these genes were known to be induced by a family of proteins called mitogen-activated protein kinases, or MAPKs. The researchers showed that blocking MAPKs reduced the activity of several of the genes that are usually enhanced by infection with the normal bacteria. Also, they found that cells infected with the bacteria tended to survive treatment with staurosporine, a chemical that normally induces apoptosis.

Overall, the group’s findings support previous speculations that some bacteria influence gene expression and the fate of cells in their hosts by tugging on the host cells’ membranes with their pili. For bacteria like N. gonorrhoeae that pass directly from host to host, the researchers argue, it would be in a bacterium’s interest to help keep its host alive. And bacteria appear to do this with the help of their pili.
 

- Public Library of Science
 

Print PDF (40K)

 
Subscribe to Bacteriology Newsletter
E-mail Address:

 

DOI: 10.1371/journal.pbio.0030140

Published: March 22, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License


Related Bacteriology News

Gut Bacteria Cospeciating with Plataspid stinkbug
An infectious agent of deception, exposed through proteomics
Gram positive bacterial membrane mystery solved
Salmonella bacteria use RNA to assess and adjust magnesium levels
How deadly toxin botulinum neurotoxin A hijacks cells
String Test: Effective and Inexpensive Method for Detecting Helicobacter pylori
Scientists develop biosensor to detect E. Coli bacteria
Found - bacteria with strange magnetic personality
Student discovers protein in yoghurt that fights E. coli
Slugs May Spread E. coli to Salad Vegetables


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us