XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
  AIDS
  Influenza
  MRSA
  Tuberculosis
  Shigella
  HCV
  SARS
  Ebola
  Dengue
  Malaria
  Pertussis
  Mumps
  Prion Diseases
  Small Pox
  Anthrax
  Leishmaniasis
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

AIDS Channel
subscribe to AIDS newsletter

Latest Research : Infectious Diseases : AIDS

   DISCUSS   |   EMAIL   |   PRINT
HIV hides from drugs in gut, preventing immune recovery
Jul 30, 2006 - 2:32:00 AM, Reviewed by: Dr. Priya Saxena

"This is the first longitudinal study to show that, while current HIV therapy is quite successful in reducing viral loads and increasing T-cells in peripheral blood, it is not so effective in gut mucosa"

 
UC Davis researchers have discovered that the human immunodeficiency virus, the virus that causes AIDS, is able to survive efforts to destroy it by hiding out in the mucosal tissues of the intestine. They also found that HIV continues to replicate in the gut mucosa, suppressing immune function in patients being treated with antiretroviral therapy--even when blood samples from the same individuals indicated the treatment was working.

"This is the first longitudinal study to show that, while current HIV therapy is quite successful in reducing viral loads and increasing T-cells in peripheral blood, it is not so effective in gut mucosa," said Satya Dandekar, professor and chair of the Department of Medical Microbiology and Immunology at UC Davis Health System and senior author of the study.

"The real battle between the virus and exposed individuals is happening in the gut immediately after viral infection," she said. "We need to be focusing our efforts on improving treatment of gut mucosa, where massive destruction of immune cells is occurring. Gut-associated lymphoid tissue accounts for 70 percent of the body's immune system. Restoring its function is crucial to ridding the body of the virus."

Results of the study suggest that patients being treated with antiretroviral therapy should be monitored using gut biopsies and that the gut's immune function be restored through earlier antiretroviral treatment and the use of anti-inflammatory medications.

"We found a substantial delay in the time that it takes to restore the gut mucosal immune system in those with chronic infections," Dandekar said. "In these patients the gut is acting as a viral reservoir that keeps us from ridding patients of the virus."

Physicians treating HIV-infected patients have long relied on blood measurements of viral load and T-cell counts when choosing a course of treatment. Viral load is the number of viral particles in a milliliter sample of blood. T-cell counts reflect the number of CD4+ T-cells in the sample. These cells, also called T-helper cells, organize the immune system's attack on disease-causing invaders. They are, however, the targets of the virus and their numbers decrease as the amount of HIV increases, leaving the body vulnerable to a variety of infections.

Last year, Dandekar's team published a study of HIV-infected patients who, despite the lack of treatment, had survived over 10 years with healthy levels of T-cells and suppressed viral loads.

"We looked at their gut lymphoid tissue and did not see loss of T-cells there. This correlated with better clinical outcomes," Dandekar explained.

Those results prompted Dandekar and her team to undertake the current study in which they set out to evaluate the effect of highly active antiretroviral therapy, known as HAART, on viral suppression and immune restoration in gut-associated lymphoid tissue. They followed 10 patients being treated with HAART, taking blood and gut samples before and after three years of treatment. Three of the patients were treated during four to six weeks of first being infected with the virus. The other participants were known to be HIV positive for more than one year.

Hoping to figure out why HAART does not work as well in the gut, Dandekar and her colleagues further examined the post-treatment of gut-associated lymphoid tissue samples. They found evidence of inflammation, which disrupts tissue function, promotes cell death and upsets the normal balance of gut flora. They also found that the activity of genes that control and promote mucosal repair and regeneration were suppressed, while the genes responsible for the inflammatory response were more active than in normal tissue.

Dandekar said these results suggest anti-inflammatory drugs may improve antiretroviral treatment outcomes. She also pointed out that genes involved with the repair and regeneration of gut-associated lymphoid tissue would make excellent drug targets.

Researchers then compared HAART outcomes in those who chose to be treated within the weeks of exposure to those with chronic infection. They discovered that newly infected patients had fewer signs of inflammation at the beginning of the study and experienced greater recovery of the gut mucosal immune system function by the end of it.

Dandekar and her colleagues are currently following additional patients being treated with HAART. Unpublished data on these patients supports the current findings, said Thomas Prindiville, a gastroenterology professor at UC Davis and a co-author of the study.

"What we continue to see is that restoration of immune function is more likely when treatment is started early," said Prindiville. "Starting HAART before T-cell counts fall below 350 cells per cubic milliliter, would preserve immune function and hasten its full recovery."

The team of physicians and researchers plan to keep testing ways of improving the efficacy of antiretroviral therapy in gut-associated lymphoid tissue. These include treating gut inflammation, starting treatment earlier and using gut biopsies to monitor treatment success.

"If we are able to restore the gut's immune response, the patient will be more likely to clear the virus," Prindiville said. "You can't treat any infectious disease without the help of the immune system."
 

- Results of the three-year study appear in the August issue of the Journal of Virology
 

jvi.asm.org

 
Subscribe to AIDS Newsletter
E-mail Address:

 

The research was supported with grants from the National Institutes of Health.

Related AIDS News

Keeping A3G in action represents a new way to attack HIV
Fighting HIV With HIV Virus Itself
HIV exploits competition among T-cells
Harmless GB Virus type C (GBV-C) protects against HIV infection
Study defines effective microbicide design for HIV/AIDS prevention
HIV depends on human p75, study shows
Simplified treatment of HIV infection shows promise
Clinical trial evaluates first-line approaches for treating HIV
T cells activated to fight HIV basis for dendritic cell therapeutic vaccine
B cells with special protein direct HIV to T cells


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us