XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
  Depression
  Neuropsychiatry
  Personality Disorders
  Bulimia
  Anxiety
  Substance Abuse
  Suicide
  CFS
  Psychoses
  Child Psychiatry
  Learning-Disabilities
   Autism
  Psychology
  Forensic Psychiatry
  Mood Disorders
  Sleep Disorders
  Peri-Natal Psychiatry
  Psychotherapy
  Anorexia Nervosa
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Autism Channel
subscribe to Autism newsletter

Latest Research : Psychiatry : Learning-Disabilities : Autism

   DISCUSS   |   EMAIL   |   PRINT
Children with Autism have Different Immune System Responses
May 6, 2005 - 3:54:00 PM, Reviewed by: Dr.

"Understanding the biology of autism is crucial to developing better ways to diagnose and treat it. While impaired communication and social skills are the hallmarks of the disorder, there has not yet been strong scientific evidence that the immune system is implicated as well. We now need to design carefully controlled studies that tell us even more about the way in which a dysfunctional immune system may or may not play a role in the disorder itself."

 
A new study by researchers at the University of California, Davis, M.I.N.D. Institute and the NIEHS Center for Children's Environmental Health demonstrate that children with autism have different immune system responses than children who do not have the disorder. This is important evidence that autism, currently defined primarily by distinct behaviors, may potentially be defined by distinct biologic changes as well.

The study was released at the 4th International Meeting for Autism Research (IMFAR) - a meeting of autism scientists started by Cure Autism Now, the UC Davis M.I.N.D. Institute and the National Alliance for Autism Research to accelerate knowledge of this increasingly common and perplexing disorder. It is estimated that autism now affects 1 in every 166 children.

"Understanding the biology of autism is crucial to developing better ways to diagnose and treat it," said Judy Van de Water, associate professor of rheumatology, allergy and clinical immunology at the UC Davis School of Medicine and the UC Davis M.I.N.D. Institute. "While impaired communication and social skills are the hallmarks of the disorder, there has not yet been strong scientific evidence that the immune system is implicated as well. We now need to design carefully controlled studies that tell us even more about the way in which a dysfunctional immune system may or may not play a role in the disorder itself."

Van de Water, along with co-investigator of the study Paul Ashwood, assistant professor of medical microbiology and immunology at the UC Davis M.I.N.D. Institute, isolated immune cells from blood samples taken from 30 children with autism and 26 typically developing children aged between two and five years of age. The cells from both groups were then exposed to bacterial and viral agents that usually provoke T-cells, B cells and macrophages - primary players in the immune system.

Of the agents tested in the study - tetanus toxoid, lippopolysaccharide derived from E. coli cell walls, a plant lectin known as PHA, and a preparation of the measles, mumps and rubella vaccine antigens - the researchers found clear differences in cellular responses between patients and controls following exposure to the bacterial agents and PHA.

In response to bacteria, the researchers saw lower levels of protein molecules called cytokines in the group with autism. Cytokines function as mediators of the immune response, carrying messages between B, T and other immune cells. They also are known to be capable of having profound effects on the central nervous system, including sleep and the fever response. Immune system responses to PHA, in contrast, produced more varied cytokine levels: Higher levels of certain cytokines and lower levels of others.

According to Van de Water and Ashwood, these studies illustrate that under similar circumstances, the cytokine responses elicited by the T-cells, B-cells, and macrophage cell populations following their activation differs markedly in children with autism compared to age-matched children in the general population. Cytokines are known to affect mood and behavior, and while their specific role in the development of autism remains unclear, the potential connection is an intriguing area of research that warrants further investigation.

"This study is part of a larger effort to learn how changes in immune system response may make some children more susceptible to the harmful effects of environmental agents," said Kenneth Olden, director of the National Institute of Environmental Health Sciences, the federal agency that provided funding for the study. "A better understanding of the connection between altered immune response and autism may lead to significant advances in the early detection, prevention and treatment of this complex neurological disorder."

"We would like to take these findings and explore whether, for example, the cytokine differences are specific to certain subsets of patients with autism, such as those with early onset, or those who exhibit signs of autism later during development," Ashwood said. He added that the logical next step is to look directly at specific cell populations that may be responsible for the diverging responses between patients and controls.
 

- 4th International Meeting for Autism Research (IMFAR)
 

www.ucdmc.ucdavis.edu/mindinstitute

 
Subscribe to Autism Newsletter
E-mail Address:

 

This study was supported by grants from the National Institutes of Environmental Health Sciences, the U.S. Environmental Protection Agency, the UC Davis M.I.N.D. Institute, Ted Lindsay Foundation and Visceral. The UC Davis M.I.N.D. (Medical Investigation of Neurodevelopmental Disorders) Institute is a unique collaborative center for research into the causes and treatments of autism, bringing together parents, scientists, clinicians and educators. For further information, go to http://www.ucdmc.ucdavis.edu/mindinstitute

Related Autism News

Autism linked to paternal age
Autism affects functioning of entire brain
Autism - the neuroanatomical basis
Trophoblast inclusions in placenta may be the earliest marker for autism
Pediatricians fail to screen for autism
Why some people lack social skills
The role of evolutionary genomics in the development of autism
State-of-the-art eye tracking system to help understand autistic children
Innovative approach affords clearer view of autism
Autism Phenome Project aims to redefine autism by identifying distinct subtypes


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us