XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
  Virology
  Bacteriology
   Salmonella
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Bacteriology Channel
subscribe to Bacteriology newsletter

Latest Research : Microbiology : Bacteriology

   DISCUSS   |   EMAIL   |   PRINT
How deadly toxin botulinum neurotoxin A hijacks cells
Mar 17, 2006 - 2:02:00 PM, Reviewed by: Dr. Sanjukta Acharya

"Our work shows that botox is really smart and clever. It uses SV2 to sneak into nerves like a Trojan horse."

 
Scientists have pinpointed exactly how botulinum neurotoxin A - a potential agent of biological warfare and one of the most lethal toxins known to man - is able to sneak into cells.

The finding is crucial for the development of new treatments against botulism, a paralytic illness caused by the toxin more commonly known as botox. As small amounts of botox are also known to alleviate many medical problems, the recent work could help to quell any risks associated with the toxin's clinical use.

Writing in the current online edition of Science, a team of researchers at the University of Wisconsin-Madison and the University of Texas report that botox latches onto a protein known as SV2 to gain entry into neurons.

"Our work shows that botox is really smart and clever," says senior author Edwin Chapman, a UW-Madison professor of physiology and an investigator of the Howard Hughes Medical Institute. "It uses SV2 to sneak into nerves like a Trojan horse."

"Botulinum neurotoxins are among the six most dangerous bioterrorism threats," adds lead author Min Dong, a UW-Madison postdoctoral researcher in the department of physiology. "Knowing the protein receptor for [botulinum toxins] can pave the way for developing anti-toxin reagents which may block the entry of toxins into cells."

The botulinum toxins, of which there are seven types, are made by a bacterium commonly found in soil, known as Clostridium botulinum. Of the seven-identified by the letters A through G--botox A lasts a particularly long time in neurons. While that feature makes it especially useful in the clinic, it also means that botox A may pose a particularly dangerous threat as a biological weapon.

The toxin enters neurons by binding to nerve endings and preventing the release of crucial chemical messengers, known as neurotransmitters, that communicate with muscles. When enough nerve endings are invaded, botox can lead to paralysis and death.

By capitalizing on the ability of botox to act on a localized group of muscles, doctors have strategically used the toxin to treat an array of medical troubles, including migraine headaches, chronic inflammation and even stuttering. "I don't think there's a neuromuscular junction that hasn't been inhibited by injecting with botox A," says Chapman.

Chapman and his team located the exact molecular gateway through which botox penetrates cells by gathering clues from earlier research that pointed to the potential importance of tiny neural storage bins known as "synaptic vesicles." Situated at nerve endings, synaptic vesicles continually work to store and release neurotransmitters.

Dozens of proteins, including SV2, work to ensure that vesicles function properly. With standard screening experiments known as "entry assays," the scientists were able to zero in on SV2. To confirm that result, they acquired mice that were genetically engineered to carry reduced amounts of SV2. Without that protein around, the researchers found that botox was unable to wreak havoc.
 

- Current online edition of Science
 

www.wisc.edu

 
Subscribe to Bacteriology Newsletter
E-mail Address:

 

Co-author Felix Yeh, a UW-Madison graduate student who works with Chapman, says that researchers have so far found three of the seven protein receptors that allow the different types of botulinum toxins into cells. "One goal at the Chapman laboratory is to identify the remaining receptors," Yeh says.

Other participating co-authors included Eric Johnson, a UW-Madison professor of food microbiology and toxicology; William Tepp, a UW-Madison senior research specialist in the department of food microbiology and toxicology; Camin Dean, a UW-Madison postdoctoral fellow in physiology; and Roger Janz, a researcher with joint appointments at W.M. Keck Center for Learning and Memory and the department of neurobiology and anatomy at the University of Texas-Houston Medical School.


Related Bacteriology News

Gut Bacteria Cospeciating with Plataspid stinkbug
An infectious agent of deception, exposed through proteomics
Gram positive bacterial membrane mystery solved
Salmonella bacteria use RNA to assess and adjust magnesium levels
How deadly toxin botulinum neurotoxin A hijacks cells
String Test: Effective and Inexpensive Method for Detecting Helicobacter pylori
Scientists develop biosensor to detect E. Coli bacteria
Found - bacteria with strange magnetic personality
Student discovers protein in yoghurt that fights E. coli
Slugs May Spread E. coli to Salad Vegetables


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us