XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
  Drug Delivery
  Nanotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Biotechnology Channel
subscribe to Biotechnology newsletter

Latest Research : Biotechnology

   DISCUSS   |   EMAIL   |   PRINT
Exploring Dynamic Personalities of Proteins
Nov 3, 2005 - 4:24:00 PM, Reviewed by: Dr.

"This research shifts the paradigm of how we thought proteins work. The traditional view is that proteins are not terribly dynamic when they do not perform their function, and that they become dynamic only during catalysis, their active state. What we have learned now is that there is no resting state, that even in the absence of substrates, before catalysis, defined motions of many atoms is an intrinsic property of these enzymes"

 
A Brandeis University study published in Nature this week advances fundamental understanding of the dynamic personalities of proteins and proposes that these enzymes are much more mobile, or plastic, than previously thought. The research, based on nuclear magnetic resonance (NMR) experiments, may shed new light on how to improve rational drug design through docking to dynamic targets.

For the first time ever, the study linked both the low-energy as well as the much rarer high-energy state of enzymes to their function, said lead author Brandeis biophysicist Dorothee Kern, who is also an investigator at the Howard Hughes Medical Institute.

This is important because drugs seek to bind, or dock, to target enzymes in the infrequent high-energy state. Kern believes the study brings scientists a step closer to a new area of research that seeks to elucidate the structures of enzymes in high-energy states that can be ultimately used for rational drug design.

"This research shifts the paradigm of how we thought proteins work. The traditional view is that proteins are not terribly dynamic when they do not perform their function, and that they become dynamic only during catalysis, their active state. What we have learned now is that there is no resting state, that even in the absence of substrates, before catalysis, defined motions of many atoms is an intrinsic property of these enzymes," explained Kern.

"Much like a rousing basketball game � in which all the players continuously but strategically move with or without the ball � nature has evolved these biomolecules so that they are constantly moving in highly-defined directions conducive to their function with or without the substrate," explained Kern, who played for the East German National basketball team before the Berlin Wall fell in 1989 and later professional basketball for united Germany.

The research involved NMR studies of the enzyme cyclophilin A, a highly conserved protein found in all organisms from yeast to the human body, and which is involved in HIV replication in humans. Elucidating the role that cyclophilin A plays in the body would be a major step toward creating drugs that impede its virulence, without interfering with normal cellular function.

Kern summed up: "The fundamental principal of life is that molecules constantly change over time �that is the definition of dynamics."
 

- Nature Journal
 

www.brandeis.edu

 
Subscribe to Biotechnology Newsletter
E-mail Address:

 



Related Biotechnology News

Gold Nanoparticle Molecular Ruler to Measure Smallest of Life�s Phenomena
Tiny inhaled particles take easy route from nose to brain
DNA Amplification and Detection Made Simple
Solitons Could Power Artificial Muscles
Nanoparticles could deliver multi-drug therapy to tumors
Nanotechnology can identify disease at early cellular level
Light-sensitive particles change chemistry at the flick of a switch
DNA Fragments for Making Tomatoes Taste Better Identified
'Custom' nanoparticles could improve cancer diagnosis and treatment
Human albumin from tobacco plants


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us