XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
  Drug Delivery
  Nanotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Biotechnology Channel
subscribe to Biotechnology newsletter

Latest Research : Biotechnology

   DISCUSS   |   EMAIL   |   PRINT
Method to predict protein separation behavior directly from protein structure
Aug 20, 2005 - 4:38:00 PM, Reviewed by: Dr.

�Predictive modeling is a new approach to drug discovery that takes information from lab analysis and concentrates it in predictive models that may be evaluated on a computer,� said Curt M. Breneman, professor of chemistry and chemical biology at Rensselaer.

 
Applying math and computers to the drug discovery process, researchers at Rensselaer Polytechnic Institute have developed a method to predict protein separation behavior directly from protein structure. This new multi-scale protein modeling approach may reduce the time it takes to bring pharmaceuticals to market and may have significant implications for an array of biotechnology applications, including bioprocessing, drug discovery, and proteomics, the study of protein structure and function.

�Predictive modeling is a new approach to drug discovery that takes information from lab analysis and concentrates it in predictive models that may be evaluated on a computer,� said Curt M. Breneman, professor of chemistry and chemical biology at Rensselaer.

�The ability to predict the separation behavior of a particular protein directly from its structure has considerable implications for biotechnology processes,� said Steven Cramer, professor of chemical and biological engineering at Rensselaer. �The research results thus far indicate that this modeling approach can be used to determine protein behavior for use in bioseparation applications, such as the protein purification methods used in drug discovery. This could potentially reduce the development time required to bring biopharmaceuticals to market.�

The modeling technique is based on methods previously developed by Breneman�s group for rapidly predicting the efficacy and side effects of small drug-like molecules. The newly developed model successfully predicted the amount of a protein that binds to a material under a range of conditions by using molecular information obtained from the protein structure. These predicted adsorption isotherm parameters then replicated experimental results by predicting the actual separation profile of proteins in chromatographic columns. Chromatography techniques are used to identify and purify molecules, in this case, particular proteins.

�We intend to test the model against more complicated protein structures as part of its further development,� said Breneman. �The outcome of this work will yield fundamental information about the complex relationship between a protein�s structural features and its chemical binding properties, and also aid in evaluating its potential biomedical applications.�

The research findings are reported in the Aug. 16 issue of Proceedings of the National Academy of Sciences in a paper titled �A Priori Prediction of Adsorption Isotherm Parameters and Chromatographic Behavior in Ion-Exchange Systems.�

In addition to Breneman and Cramer, the collaborative research team includes Asif Ladiwala and Kaushal Rege, who both recently earned doctorates in chemical and biological engineering at Rensselaer. The work was supported by the National Science Foundation and GE Healthcare.

The researchers� computational model uses a combination of molecular-level quantitative structure-property relationship models with macroscopic steric mass action isotherm models and support vector machine regression computations.
 

- The research findings are reported in the Aug. 16 issue of Proceedings of the National Academy of Sciences in a paper titled �A Priori Prediction of Adsorption Isotherm Parameters and Chromatographic Behavior in Ion-Exchange Systems.�
 

Rensselaer Polytechnic Institute

 
Subscribe to Biotechnology Newsletter
E-mail Address:

 

Biotechnology and Interdisciplinary Studies at Rensselaer
At Rensselaer, faculty and students in diverse academic and research disciplines are collaborating at the intersection of the life sciences and engineering to encourage discovery and innovation. Rensselaer�s four biotechnology research constellations - biocatalysis and metabolic engineering, functional tissue engineering and regenerative medicine, biocomputation and bioinformatics, and integrative systems biology - engage a multidisciplinary mix of faculty and students focused on the application of engineering and physical and information sciences to the life sciences. Ranked among the world�s most advanced research facilities, Rensselaer�s Center for Biotechnology and Interdisciplinary Studies provides a state-of-the-art platform for collaborative research and world-class programs and symposia.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation�s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.


Related Biotechnology News

Gold Nanoparticle Molecular Ruler to Measure Smallest of Life�s Phenomena
Tiny inhaled particles take easy route from nose to brain
DNA Amplification and Detection Made Simple
Solitons Could Power Artificial Muscles
Nanoparticles could deliver multi-drug therapy to tumors
Nanotechnology can identify disease at early cellular level
Light-sensitive particles change chemistry at the flick of a switch
DNA Fragments for Making Tomatoes Taste Better Identified
'Custom' nanoparticles could improve cancer diagnosis and treatment
Human albumin from tobacco plants


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us