XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
  Memory
  Regeneration
  Stroke
  Brain Diseases
   Epilepsy
  Headache
  Spinal Cord Diseases
  Demyelinating Diseases
  Neurodegenerative Diseases
  Taste
  Trigeminal Neuralgia
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Epilepsy Channel
subscribe to Epilepsy newsletter

Latest Research : Neurosciences : Brain Diseases : Epilepsy

   DISCUSS   |   EMAIL   |   PRINT
Novel treatment targets for absence seizures - Study
Jul 4, 2005 - 1:52:00 PM, Reviewed by: Dr.

"If this research leads to drugs that can target these newly discovered receptors, it would be an important advance in therapy,"

 
New research suggests novel treatment targets for the most common form of childhood epilepsy � with the potential to have fewer side effects than traditional therapy. The findings from Wake Forest University School of Medicine are reported today in the July issue of the Journal of Neurophysiology.

Through studies in animals, the researchers learned more about the possible brain pathways involved in absence, or petit mal, seizures and tested a drug that revealed a potential new target for blocking seizures before they spread.

"Many current therapies act on the entire nervous system and can have such side effects as sleep disruptions, dizziness and increased risk of developmental side effects," said Georgia Alexander, who with Dwayne Godwin, Ph.D., co-authored the new study. "Because this treatment blocks the pathway that may cause the spread of seizures, it could be more effective and have fewer side effects."

Absence seizures, which are most common in children between 6 and 12, get their name because during the seizure the child seems to be temporarily unconscious of his or her surroundings. Although they last only a few seconds, the seizures can occur hundreds of times a day and can dramatically impact learning and development.

Doctors don't know exactly what causes the seizures, but a prevalent theory is that an abnormal electrical discharge originates in the cerebral cortex, the part of the brain that controls thinking and feeling, and travels to the thalamus, a part of the brain that controls consciousness and certain brain rhythms. The abnormal rhythmic discharges that result may then spread to other parts of the brain. Other types of seizures may also spread this way, including Lennox-Gastaut seizures, a severe form of childhood epilepsy that is often resistant to treatment.

"We know that the cortex communicates with the thalamus continuously, and current theories suggest that when the 'conversation' gets too loud, seizures can occur," said Alexander. "We wanted to see if there was a way to calm the dialog."

In studying this possible pathway of seizures, Alexander made an important finding about its organization. It was already known that cells in the thalamus communicate with cells in the cortex by releasing the neurotransmitter glutamate. The glutamate travels across the gap -- creating a pathway for cell-to-cell communication.

Alexander and Godwin were the first to show that in addition to releasing glutamate, thalamus cells also have a special type of glutamate receptor that acts almost as a braking system � slowing the release of glutamate when there is high-intensity brain activity associated with a seizure.

"It's like the gas and brake pedals of your car, "said Godwin, associate professor of neurobiology and anatomy and the senior researcher on the project. "Glutamate is important for normal communication in the brain, but sometimes it's necessary to put on the brakes in order to preserve normal function. This receptor appears to slow down the rate at which glutamate is released across the synaptic gap, and may protect the cells from becoming overexcited."

Alexander hypothesizes that in epilepsy patients, the protective receptors may not function well or that glutamate production may be abnormal. A treatment that targets these protective glutamate receptors has the potential to block the pathway involved in seizures, with the added benefit of allowing normal communication to continue.

"If this research leads to drugs that can target these newly discovered receptors, it would be an important advance in therapy," said William L. Bell, M.D., a specialist in epilepsy at Wake Forest University Baptist Medical Center.

Godwin explained that design of improved drugs to target the receptors wouldn't be a cure, but would short-circuit the type of abnormal activity that results in seizures.

In this research, the scientists studied the pathway by simulating seizure-related activity within brain circuits. They will continue the research by studying animals that are genetically predisposed to epilepsy.
 

- July issue of the Journal of Neurophysiology
 

www.wfubmc.edu

 
Subscribe to Epilepsy Newsletter
E-mail Address:

 

The research was funded by the National Institutes of Health.

About Wake Forest University Baptist Medical Center:
Wake Forest Baptist is an academic health system comprised of North Carolina Baptist Hospital and Wake Forest University Health Sciences, which operates the university's School of Medicine. The system comprises 1,282 acute care, psychiatric, rehabilitation and long-term care beds and is consistently ranked as one of "America's Best Hospitals" by U.S. News & World Report.


Related Epilepsy News

Responsive Neurostimulator System: An implantable device to treat epilepsy
Defibrillator to prevent epileptic seizures?
Septum sets the tempo of brain's electrical activity
Multiple-stage surgery brings hope for Tuberous Sclerosis with intractable seizures
Flexible Drug Dosing in Epilepsy Reduces Side Effects
Depression and anxiety improve after epilepsy surgery
Ketogenic diet prevents seizures
Blood Test Can Help Determine Type of Seizure
Propofol is effective in pediatric refractory status epilepticus
Astrocytes appear to play a key role in development of epilepsy


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us