XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
  X Chromosome
  Genetic Disorders
  Cloning
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Genetics Channel
subscribe to Genetics newsletter

Latest Research : Genetics

   DISCUSS   |   EMAIL   |   PRINT
MDC1 protein amplifies DNA injury signals
Jan 21, 2006 - 3:39:00 PM, Reviewed by: Dr. Priya Saxena

"It's important that DNA lesions get repaired because then we don't get mutations"

 
A Mayo Clinic-led research collaboration has discovered that the protein MDC1 amplifies weak DNA injury signals so genetic repair can begin. Once amplified, even low-level damage signals become strong enough to activate the cell's natural repair processes while the injury is most tractable to repair. How this "distress call" was communicated wasn't clear until this finding, which appears in the January 20 issue of Molecular Cell. The research was conducted in collaboration with colleagues from Harvard University and the University of Texas, Austin.

"It's important that DNA lesions get repaired because then we don't get mutations," says Junjie Chen, Ph.D., Mayo Clinic oncology researcher and leader of the Mayo Clinic team. "This is just one mechanism involved in communicating injury to the repair processes, but it's an important start to understanding how we might one day design new treatments that help this repair system recover from injury or resist injury."

Dysfunction of the DNA damage response pathway makes the gene unstable. Genomic instability is the driving force in tumor formation, which is why cancer researchers around the world are focusing on understanding the DNA damage response pathway. Knowing how the cell communicates DNA injury to alert the repair system is an important first step to designing new therapies for cancers and other diseases.

The damage control process is continual and essential to health. DNA must repair itself so the instructions it gives to operate bodily functions are correct. In earlier work, the Mayo Clinic researchers determined that MDC1 is important to the repair process -- but they didn't know its role.

DNA is easily and often damaged by environmental and chemical sources such as ultraviolet radiation, cigarette smoke, and other natural and artificial toxins. These create injury sites or lesions. In healthy situations, DNA repair signal pathways are competently monitoring for damage and alerting the repair system when DNA lesions are detected.

"Most of the time we don't really encounter severe damage in the cell; most of the damage to DNA is mild injury -- such as low doses of sunlight," notes Dr. Chen. "But it's still injury, and we want to repair it as soon as possible so things don't get worse. That's why our question was: How does the cell detect low-dose damage signals? We believe this amplification process involving MDC1 is the answer to that question, and that it is critical because it's involved in even very subtle injury, such as a single DNA strand break -- which is very small. It is a very sensitive communication pathway."

To investigate the role of the protein MDC1, the researchers disrupted the MDC1 gene in mice and compared them to normal mice. The engineered strain of mice lacking MDC1 was extremely sensitive to DNA damage -- and unable to repair it. The MDC1-deficient mice showed symptoms of growth retardation, male infertility, immune defects and chromosome instability.

Now that they understand MDC1's role in amplifying distress calls from injured DNA to cue the repair process, the Mayo researchers are investigating another system that appears to play a similar role in the cell. "If we can understand all the pathways involved in signaling the DNA repair process, we may be able to develop a comprehensive approach to managing the signals to treat disease," says Dr. Chen.
 

- January 20 issue of Molecular Cell
 

www.mayoclinic.org

 
Subscribe to Genetics Newsletter
E-mail Address:

 

Other members of the Mayo Clinic research team include: Zhenkun Lou, Ph.D.; Katherine Minter-Dykhouse; and Jan van Deursen, Ph.D. Team members from Harvard Medical School include Sonia Franco, M.D., Ph.D.; Monica Gostissa, Ph.D.; John Manis, M.D.; and Frederick Alt, Ph.D. Team members from the University of Texas, Austin, include Tanya Paull, Ph.D. and Melissa Rivera. Collaborators from the National Cancer Institute were Andre Nussenzweig, Ph.D. and Arkady Celeste, Ph.D. The work was supported by grants from the National Institutes of Health.

Related Genetics News

New research into csd genes could help designing strategies for breeding honey bees
Williams Syndrome, the brain and music
Genetic mutation identified as cause of cranio-lenticulo-sutural dysplasia
Chance Fluctuations in mRNA Output in Mammalian Cells
Transposon Silencing Keeps Jumping Genes in Their Place
GATA2 - predicting susceptibility to coronary artery disease
Exploring genetics of congenital malformations
Genome insertions and deletions (INDELs) provide expanded view of human genetic differences
BRIT1 gene identified as protector of DNA
FDA Approves Idursulfase As First Treatment for Hunter Syndrome


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us