XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
  X Chromosome
  Genetic Disorders
  Cloning
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Genetics Channel
subscribe to Genetics newsletter

Latest Research : Genetics

   DISCUSS   |   EMAIL   |   PRINT
Mutations Change the Boolean Logic of Gene Regulation
Mar 29, 2006 - 6:39:00 AM, Reviewed by: Dr. Priya Saxena

The findings in this study support the growing appreciation that, from bacterium to baleen whale, complexity is highly dependent on fine-tuning gene regulation.

 
It is easy to think of a gene acting like a light bulb, switching either on or off, remaining silent, or being transcribed by the RNA-making machinery. The region of DNA that controls the gene's output is called its regulatory region, and in this simple (and too simplistic) scenario, that region would act like a simple on�off switch.

But the regulatory regions of real genes are more complex, and act more like molecular computers, combining the effects of multiple inputs and calibrating the gene's output accordingly. The inputs are the various molecules that affect gene activity by binding to sites in the regulatory region. These molecules combine their effects in complex ways. Sometimes the gene remains silent unless both are present. Sometimes they are additive, such that the output when two factors are present is twice the output when only one is present. Sometimes they cancel each other out�in the presence of either, the gene is transcribed, but in the presence of both, it is not.

Thus, the regulatory region acts as a Boolean logic function, whose simple ANDs, ORs, and NOTs combine to determine the output of the gene. In a new study, Avi Mayo, Uri Alon, and colleagues show that mutations in the regulatory region affect this logic function in a simple and well-studied genetic system, the lac operon in Escherichia coli bacteria, whose suite of genes regulate metabolism of lactose.

The authors began by creating multiple strains of bacteria with mutations in the binding sites for the two regulators of the gene, called CRP and LacI, that respond to cyclic AMP and IPTG, an analog of lactose. They analyzed the effect of these mutations on the rate of gene transcription in the presence of varying concentrations of the two inducers. Previously, the authors showed that the function of the unmutated regulatory region was intermediate between a pure �AND gate� (in Boolean parlance) and a pure �OR gate�: that is, at certain concentrations the first regulator AND the second were needed, but at others, one OR the other sufficed. In the mutated strains, they found that some mutations replicated this behavior, while others switched the regulatory region to a more purely AND or purely OR gate, independent of concentration. Some mutations left the regulator almost like a simple light switch, whose on-or-off state depended almost entirely on one, but not the other, regulator.

Next, they developed a mathematical model that links the binding strengths of the regulators for each mutation (the �inputs� of the �regulatory function�) to the gene output. Based on this model, they propose that point mutations in this system cannot create all of the 16 possible two-input gates described by Boolean logic. For instance, since both regulators stimulate gene activity, no simple mutation is likely to switch the system to an �AND NOT� gate, in which one input can stimulate only when the other is not present.

The authors suggest that applying this kind of logic analysis to genetic �circuits� may aid in the design of artificial genetic systems, and in understanding more complex gene regulatory regions. With only 30,000 genes, it is clear that humans and other complex creatures must depend on exquisitely regulated gene expression to develop and adapt to environmental changes. The findings in this study support the growing appreciation that, from bacterium to baleen whale, complexity is highly dependent on fine-tuning gene regulation.
 

- Robinson R (2006) Mutations Change the Boolean Logic of Gene Regulation. PLoS Biol 4(4): e64
 

Read Research Article

 
Subscribe to Genetics Newsletter
E-mail Address:

 

Mutations Change the Boolean Logic of Gene Regulation

Richard Robinson

DOI: 10.1371/journal.pbio.0040064

Published: March 28, 2006

Copyright: � 2006 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License.


Related Genetics News

New research into csd genes could help designing strategies for breeding honey bees
Williams Syndrome, the brain and music
Genetic mutation identified as cause of cranio-lenticulo-sutural dysplasia
Chance Fluctuations in mRNA Output in Mammalian Cells
Transposon Silencing Keeps Jumping Genes in Their Place
GATA2 - predicting susceptibility to coronary artery disease
Exploring genetics of congenital malformations
Genome insertions and deletions (INDELs) provide expanded view of human genetic differences
BRIT1 gene identified as protector of DNA
FDA Approves Idursulfase As First Treatment for Hunter Syndrome


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us