XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
  Memory
  Regeneration
  Stroke
  Brain Diseases
  Headache
  Spinal Cord Diseases
   Lou Gehrig's Disease
  Demyelinating Diseases
  Neurodegenerative Diseases
  Taste
  Trigeminal Neuralgia
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Lou Gehrig's Disease Channel
subscribe to Lou Gehrig's Disease newsletter

Latest Research : Neurosciences : Spinal Cord Diseases : Lou Gehrig's Disease

   DISCUSS   |   EMAIL   |   PRINT
Mutant Cu/Zn superoxide dismutase (SOD1) enzymes implicated in Lou Gehrig's disease
Aug 11, 2005 - 2:51:00 AM, Reviewed by: Dr.

"The mutants, but not the normal SOD1, adhere to a hydrophobic or 'greasy' surface, and this property could promote abnormal interactions with other proteins or membranes in the cell," explains Dr. Hayward. "How well different tissues can handle this burden of sticky protein, especially during aging, may be one factor that determines which cell types are most vulnerable in the disease. It was interesting to us that the adherent forms were not restricted to the nervous system in the mouse models but were also seen in other tissues such as heart and skeletal muscle. It is possible that this property could contribute to abnormalities in muscle, while other tissues such as kidney do not accumulate hydrophobic SOD1 despite a high expression level of the mutants."

 
A new study indicates that mutant Cu/Zn superoxide dismutase (SOD1) enzymes that are associated with an inherited form of Lou Gehrig's disease cause the protein to become sticky in tissues. Partial unfolding of the mutant protein can expose hydrophobic residues that may promote abnormal interactions with other proteins or membranes in the cell.

Over 5,600 people in the U.S. are diagnosed with amyotrophic lateral sclerosis (ALS) or Lou Gehrig's disease each year. About 30,000 Americans have the disease at any given time, and 10% of cases are inherited.

"Amyotrophic lateral sclerosis is a neurodegenerative disorder in which neurons of the motor pathways in the brain and spinal cord die," explains Dr. Lawrence J. Hayward of the University of Massachusetts Medical School. "It typically strikes during middle age, and although it may start with only mild weakness, the symptoms can spread insidiously over months to impair mobility, speech and swallowing, and ultimately the muscles required for respiration."

Despite the prevalence of ALS, the biological mechanisms that kill the motor neurons in most patients are incompletely understood. However, for a fraction of inherited ALS patients, mutations in the gene for SOD1 cause the disease by creating a toxic enzyme. Evidence suggests that misfolding or partial unfolding of mutant SOD1 proteins in these patients might be key to the toxicity.

Hoping to learn more about how SOD1 contributes to ALS, Dr. Hayward began to study the properties of several ALS-causing SOD1 mutants in research sponsored by the National Institutes of Health and the ALS Association.

"Our efforts have focused upon trying to explain how over 100 different mutant forms of SOD1 cause inherited ALS," says Dr. Hayward. "The initial results were puzzling because some mutations had dramatic effects on copper and zinc binding, enzymatic activity, and stability of the protein, but many other mutations seemed to cause only subtle changes in these properties in vitro. Yet all of the mutants were known to be toxic in patients."

As a result of several additional experiments done in his lab and by other groups, Dr. Hayward suspected that the mutant proteins might be more vulnerable than the normal enzyme to specific stresses in tissues. In their Journal of Biological Chemistry paper, Dr. Hayward and his colleagues at the University of Massachusetts Medical School show that when the mutant SOD1 enzymes are exposed to reagents that can disrupt some of the protein's bonds or remove its metal ions, they become much stickier than the normal protein.

"The mutants, but not the normal SOD1, adhere to a hydrophobic or 'greasy' surface, and this property could promote abnormal interactions with other proteins or membranes in the cell," explains Dr. Hayward. "How well different tissues can handle this burden of sticky protein, especially during aging, may be one factor that determines which cell types are most vulnerable in the disease. It was interesting to us that the adherent forms were not restricted to the nervous system in the mouse models but were also seen in other tissues such as heart and skeletal muscle. It is possible that this property could contribute to abnormalities in muscle, while other tissues such as kidney do not accumulate hydrophobic SOD1 despite a high expression level of the mutants."

These results may lead to new treatments for some forms of ALS. For example, if researchers can minimize the hydrophobic exposure or can understand how certain tissues prevent build-up of the sticky forms of SOD1, they might be able to boost defenses in tissues known to be susceptible to mutant SOD1 accumulation.
 

- The research appears as the "Paper of the Week" in the August 19 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.
 

American Society for Biochemistry and Molecular Biology

 
Subscribe to Lou Gehrig's Disease Newsletter
E-mail Address:

 

The Journal of Biological Chemistry's Papers of the Week is an online feature which highlights the top one percent of papers received by the journal. Brief summaries of the papers and explanations of why they were selected for this honor can be accessed directly from the home page of the Journal of Biological Chemistry online at www.jbc.org.

The American Society for Biochemistry and Molecular Biology (ASBMB) is a nonprofit scientific and educational organization with over 11,000 members in the United States and internationally. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, nonprofit research institutions, and industry.

Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's primary purpose is to advance the sciences of biochemistry and molecular biology through its publications, the Journal of Biological Chemistry, The Journal of Lipid Research, Molecular and Cellular Proteomics, and Biochemistry and Molecular Biology Education, and the holding of scientific meetings.

For more information about ASBMB, see the Society's website at www.asbmb.org.


Related Lou Gehrig's Disease News

Discoveries should aid research into cause of ALS
First diagnostic indicator for Amytrophic Lateral Sclerosis (ALS) identified
Specific signaling link between neurons and muscles in the fruit fly is essential for keeping the nervous system stable.
Mutant Cu/Zn superoxide dismutase (SOD1) enzymes implicated in Lou Gehrig's disease
Arimoclomol Significantly Inhibits Progression of Amyotrophic Lateral Sclerosis


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us