XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
  Memory
  Regeneration
  Stroke
  Brain Diseases
  Headache
  Spinal Cord Diseases
   Lou Gehrig's Disease
  Demyelinating Diseases
  Neurodegenerative Diseases
  Taste
  Trigeminal Neuralgia
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Lou Gehrig's Disease Channel
subscribe to Lou Gehrig's Disease newsletter

Latest Research : Neurosciences : Spinal Cord Diseases : Lou Gehrig's Disease

   DISCUSS   |   EMAIL   |   PRINT
Specific signaling link between neurons and muscles in the fruit fly is essential for keeping the nervous system stable.
Sep 4, 2005 - 7:20:00 AM, Reviewed by: Dr.

"If we want to make new drugs to treat neurodegenerative disease, then we have to identify new drug targets, and our study findings present that potential"

 
A UCSF study has found that a specific signaling link between neurons and muscles in the fruit fly is essential for keeping the insect's nervous system stable.

The findings are relevant for ongoing research in identifying causes and developing treatments for neuromuscular neurodegenerative diseases in humans, such as amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, says study co-author Graeme Davis, PhD, associate professor and vice chair of the Department of Biochemistry and Biophysics at the University of California, San Francisco.

"If we want to make new drugs to treat neurodegenerative disease, then we have to identify new drug targets, and our study findings present that potential," he says. "This study is a significant step forward because we have shown that a signaling system composed of several genes is important for keeping the nervous system stable."

The findings are reported in the September issue of the journal Neuron.

The nervous system is a complex pattern of connections that exists for the entire life of the organism, and understanding how the myriad patterns and pathways of these connections are maintained for long periods of time presents an ongoing challenge to scientists, says Davis.

Davis and co-author Benjamin Eaton, PhD, a post-doctoral fellow in Davis' lab, were led to the new discovery through ongoing experiments with a signaling system in fruit flies that is tied to a protein called bone morphogenetic protein, or BMP. They found that the BMP signaling system is required for the long-term stability of the neuromuscular synapse, the point where a nervous impulse passes from a neuron to a muscle to cause muscle movement.

In the absence of BMP signaling, their research showed, the synapse between the nerve and muscle disassembles and degenerates. This observation enabled the team to look for new genes involved in the BMP signaling system, which led to the identification of specific stabilizing factors in the nervous system.

"It is a very complicated task to keep the nervous system stable. We are using a model organism, the fruit fly, to help us rapidly identify the genetic basis for the long-term stability," Davis says. "What we have been able to do with this study is to hone in on several genes that are essential for this stability."

By examining genetic mutations that delete individual genes, the scientists were able to demonstrate that BMP signaling is required for the stability of synaptic connections. Further genetic tests demonstrated that a cytoplasmic enzyme called LIM Kinase1 is an essential link that enables BMP signaling molecules to stabilize the synapse.

Davis notes that working with fruit flies allows scientists to identify the function of new genes very rapidly. "We can easily observe the connections between the nerve and muscle, and see if the nerve is degenerating. Each week we can test hundreds of genes and determine if they are important for stabilizing the synapse between the nerve and muscle."

"The signaling molecules that are present in fruit flies are basically the same as in humans," explains Davis. "In a matter of a few years we hope to test the function of every gene in the genome and identify a whole array of genes that are necessary to keep the neuromuscular synapse stable."

ALS, for example, is a degenerative neuromuscular disease. "If we can find a way to keep the neuromuscular synapse stable, then we might be able to slow down the rate of degeneration," he adds.

"With ALS and other neuromuscular degenerative diseases, only a handful of genes have been identified that either cause the diseases or contribute to their progression."

"The exciting thing about this study," says Davis, "is that it starts to tell us how we can keep a synapse stable. And that can lead us to understanding why synapses degenerate at the muscle cells of people with ALS. If we can identify more genes that are important for synapse stability, then there will be more targets for the development of new drugs to treat these diseases. Currently, the number of potential targets for new drug development is quite limiting and we hope to help change that. This is an exciting time with the potential for real progress in terms of understanding the biology of these diseases."
 

- September issue of the journal Neuron
 

University of California - San Francisco

 
Subscribe to Lou Gehrig's Disease Newsletter
E-mail Address:

 



Related Lou Gehrig's Disease News

Discoveries should aid research into cause of ALS
First diagnostic indicator for Amytrophic Lateral Sclerosis (ALS) identified
Specific signaling link between neurons and muscles in the fruit fly is essential for keeping the nervous system stable.
Mutant Cu/Zn superoxide dismutase (SOD1) enzymes implicated in Lou Gehrig's disease
Arimoclomol Significantly Inhibits Progression of Amyotrophic Lateral Sclerosis


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us