XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
  AIDS
  Influenza
  MRSA
  Tuberculosis
  Shigella
  HCV
  SARS
  Ebola
  Dengue
  Malaria
   Plasmodium
  Pertussis
  Mumps
  Prion Diseases
  Small Pox
  Anthrax
  Leishmaniasis
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Malaria Channel
subscribe to Malaria newsletter

Latest Research : Infectious Diseases : Malaria

   DISCUSS   |   EMAIL   |   PRINT
Genes determine mosquitoes feeding habits
Oct 20, 2005 - 11:00:00 PM, Reviewed by: Dr.

�There are suggestions that the virus survives through the winter, inside the bodies of these females. When the mosquito goes dormant, we think something in its body causes the virus to go dormant, too. The virus stops replicating, then starts replicating again in the spring when the mosquito leaves dormancy.�

 
Entomologists have isolated three key genes that determine when female mosquitoes feed on blood and when they decide to switch to an all-sugar diet to fatten up for the winter.
David Denlinger, professor of entomology at Ohio State University, hopes this discovery will lead scientists to other genes that help the mosquitoes survive cold weather � in particular, those genes related to how insects handle the West Nile Virus when they enter a kind of hibernation.

Denlinger and Rebecca Robich, a former doctoral student at Ohio State and now a research fellow at the Harvard School of Public Health, published their findings in the online edition of the Proceedings of the National Academy of Sciences.

Only female mosquitoes draw blood, and only females survive the winter. Proteins in the blood they suck from humans and other animals enable the mosquitoes to produce eggs, and the sugars � which they eat in the form of rotting fruit or nectar � let them double their weight in fat so they can survive without food until the next spring.

As the days begin to get shorter, two genes that code for digesting blood switch off, and a different gene for digesting sugar and retaining fat switches on.

�Normally mosquitoes are out taking blood from you and me, but when they're programmed to begin this hibernation phase we call diapause, the blood response shuts down. They can't tolerate a blood meal at that time. They switch completely to sugar, so that's a pretty dramatic metabolic shift,� Denlinger said. Denlinger and Robich compared the genes expressed in the normal females to the ones that had entered diapause. After only a few days in short-light conditions, the mosquitoes that had entered diapause stopped expressing two genes for blood digestion, and started expressing one for sugar digestion and fat retention.

�We are just beginning to understand the genes that regulate diapause,� Denlinger said. The genes for these digestive enzymes provide a kind of marker, so you can detect whether an insect is in diapause, but I think other genes are the ones that cause diapause to begin.�

Understanding these genes is important, he said, because scientists suspect that mosquitoes have some genetic trick for controlling the West Nile Virus when they enter diapause.

�There are suggestions that the virus survives through the winter, inside the bodies of these females,� he said. �When the mosquito goes dormant, we think something in its body causes the virus to go dormant, too. The virus stops replicating, then starts replicating again in the spring when the mosquito leaves dormancy.�

Whether scientists could use this information to manipulate mosquito populations to control the spread of West Nile will take years to find out, he added.
 

- Proceedings of the National Academy of Sciences
 

Entomology at Ohio State University

 
Subscribe to Malaria Newsletter
E-mail Address:

 



Related Malaria News

Retina can provide a very reliable way of diagnosing cerebral malaria
New findings could lead to vaccine for severe malaria
AgDscam gene Holds the Key to Broad-Based Pathogen Recognition
Genes responsible for malaria parasite's survival pin pointed
Mosquito immune system examined
The Haptoglobin Genotype Connection with Childhood Anemia in a Malaria-Endemic Region
Mosquitoes that could help combat malaria!
Malaria parasite plasmodium impairs key immune system cells
Modeling the Impact of Intermittent Preventative Treatment on the Spread of Drug-Resistant Malaria
Global warming trend may contribute to malaria's rise


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us