XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
  AIDS
  Influenza
  MRSA
  Tuberculosis
  Shigella
  HCV
  SARS
  Ebola
  Dengue
  Malaria
   Plasmodium
  Pertussis
  Mumps
  Prion Diseases
  Small Pox
  Anthrax
  Leishmaniasis
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Malaria Channel
subscribe to Malaria newsletter

Latest Research : Infectious Diseases : Malaria

   DISCUSS   |   EMAIL   |   PRINT
Mosquito immune system examined
Jun 9, 2006 - 1:59:00 PM, Reviewed by: Dr. Priya Saxena

"The mosquito's immune system appears to employ a variety of antimicrobial defense factors (genes) against the malaria parasite, and can therefore significantly limit infection."

 
Mosquitoes employ the same immune factors to fight off bacterial pathogens as they do to kill malaria-causing Plasmodium parasites, according to a study by researchers at the Johns Hopkins Bloomberg School of Public Health. The study identified several genes that encode proteins of the mosquito's immune system. All of the immune genes that were involved in limiting infection by the malaria parasites were also important for the resistance to bacterial infection. However, several immune genes that were essential for resistance to bacterial infection did not affect Plasmodium infection. According to the authors, the findings add to the understanding of mosquito immunity, and could contribute towards the development of malaria-control strategies based on blocking the parasite in the mosquito.

"Mosquitoes that transmit malaria can kill large portions of Plasmodium parasites, and some mosquito strains are totally resistant to Plasmodium. However, our observations suggest that mosquitoes have not evolved a highly-specific defense against malaria parasites. Instead, they employ factors of their antimicrobial defense system to combat the Plasmodium parasite," said George Dimopoulos, Ph.D., senior author of the study and assistant professor with the Bloomberg School's Malaria Research Institute. "The degree of mosquito susceptibility to Plasmodium, and thereby its capacity to transmit malaria, may therefore partly depend on the mosquito's microbial exposure, which can differ greatly between different geographic sites. Potentially, we could boost the mosquito's capacity to fight the malaria parasite by exposing it to certain microbes or compounds that resemble the microbe molecules responsible for immune activation."

In this study, the investigators also analyzed the immune responses of Anopheles gambiae mosquitoes to infection with different Plasmodium parasite species, one that causes malaria in humans and another that only infects rodents. The study revealed that mosquitoes mostly employ the same immune factors in defending against the two different Plasmodium species. Only a few immune genes were more important in the defense against either one of the two species.

"The mosquito's immune system appears to employ a variety of antimicrobial defense factors (genes) against the malaria parasite, and can therefore significantly limit infection. The parasite, on the other hand, is capable of evading these defenses to a degree that allows its transmission by the mosquito. Now we have to figure out how to make the mosquito's immune system more effective in killing malaria parasites at multiple stages that would render the development of evasive mechanisms impossible for the parasite," said Dimopoulos.
 

- The study is published in the June 8, 2006, edition of PloS Pathogens.
 

www.jhsph.edu

 
Subscribe to Malaria Newsletter
E-mail Address:

 



Related Malaria News

Retina can provide a very reliable way of diagnosing cerebral malaria
New findings could lead to vaccine for severe malaria
AgDscam gene Holds the Key to Broad-Based Pathogen Recognition
Genes responsible for malaria parasite's survival pin pointed
Mosquito immune system examined
The Haptoglobin Genotype Connection with Childhood Anemia in a Malaria-Endemic Region
Mosquitoes that could help combat malaria!
Malaria parasite plasmodium impairs key immune system cells
Modeling the Impact of Intermittent Preventative Treatment on the Spread of Drug-Resistant Malaria
Global warming trend may contribute to malaria's rise


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us