XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
  Memory
  Regeneration
  Stroke
  Brain Diseases
  Headache
  Spinal Cord Diseases
  Demyelinating Diseases
   Multiple Sclerosis
  Neurodegenerative Diseases
  Taste
  Trigeminal Neuralgia
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Multiple Sclerosis Channel
subscribe to Multiple Sclerosis newsletter

Latest Research : Neurosciences : Demyelinating Diseases : Multiple Sclerosis

   DISCUSS   |   EMAIL   |   PRINT
Interferon Does Not Affect Duration Of "Black Hole" Lesions In Multiple Sclerosis
Sep 13, 2005 - 1:57:00 PM, Reviewed by: Dr.

"One can postulate that although IFNβ-1b may reduce the frequency of BHs, after the lesion occurs, the drug is not changing the pathological process"

 
Although treatment with interferon appears to reduce the formation of new areas of damage in the brains of patients with multiple sclerosis (MS), including lesions that appear as highly contrasted images, called black holes, on magnetic resonance imaging (MRI), treatment does not appear to affect the duration of these damaged regions, according to a new study posted online today by the Archives of Neurology, one of the JAMA/Archives journals. The study will be published in the November print edition of the journal.

Previous studies have shown that treatment with interferon beta-1b, a chemical that has activity on the immune system, reduces the formation of lesions visible to MRI, according to background information in the article. Chronic, persisting black holes reflect areas of irreversible nerve fiber loss and permanent damage. Black holes of shorter duration are believed to reflect the presence of short-term swelling. Shortening the duration of black holes, the authors suggest, may prevent the formation of permanent detrimental lesions, ultimately exerting a neuro-protective effect.

Francesca Bagnato, M.D., of the National Institute of Neurological Disorders and Stroke, Bethesda, Md., and colleagues analyzed MRIs for both the formation and duration of black holes for six patients with relapsing-remitting type MS. Monthly MRIs were obtained for 36 months before the treatment was initiated (natural history phase) and for 36 months during treatment with interferon (therapy phase).

The researchers found that the number of new black holes increased during both the treatment and natural history phases for all patients, but the accumulation of new black holes was substantially lower for patients during the treatment phase. The duration of new black holes arising during the treatment phase was not shorter than the duration of black holes arising during the natural history phase, however.

"The sample size is small, but the length of the longitudinal followup (i.e., 72 months) represents a robust and valid data set for describing the course of MS during both the NHPs [natural history phase] and TPs [therapy phase]," the authors note. "We demonstrate that new BHs [black holes] may significantly accumulate over time even when IFNβ-1b [interferon beta-1b] is administered. However, repeated administration of the drug did significantly decrease the rate of BH formation, thus protecting the brain tissue from accumulating degenerative lesions."

"One can postulate that although IFNβ-1b may reduce the frequency of BHs, after the lesion occurs, the drug is not changing the pathological process," the authors write. They suggest larger studies over longer periods might reduce difficulties in interpretation encountered in this study, allowing a better assessment of whether the analysis used might be useful in establishing the proper role of neuroprotective drugs of the central nervous system in the treatment of patients with MS.
 

- Archives of Neurology (online edition)
 

Arch Neurol. 2005;62:1-5

 
Subscribe to Multiple Sclerosis Newsletter
E-mail Address:

 



Related Multiple Sclerosis News

Cause of nerve fiber damage in multiple sclerosis identified
Fampridine may hold promise for treating Multiple Sclerosis
CNS can send out signals to invite autoimmune attacks
Natalizumab Re-approved for Relapsing Multiple Sclerosis
Efficacy in relapse rate reduction beyond five years shown for interferon beta 1b in Multiple Sclerosis
Systematic Review Questions Accuracy of MRI in Multiple Sclerosis
Statins could prove useful in treating MS
12.5 kda cystatin may generate first simple test for multiple sclerosis
Fatal flaw in natalizumab, multiple sclerosis drug, trial
Azathioprine reduces new brain inflammatory lesions in MS


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us