XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
  Memory
  Regeneration
  Stroke
  Brain Diseases
  Headache
  Spinal Cord Diseases
  Demyelinating Diseases
  Neurodegenerative Diseases
   Rett Syndrome
  Taste
  Trigeminal Neuralgia
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Neurodegenerative Diseases Channel
subscribe to Neurodegenerative Diseases newsletter

Latest Research : Neurosciences : Neurodegenerative Diseases

   DISCUSS   |   EMAIL   |   PRINT
Possible molecular origin of nervous system degeneration diseases
Sep 24, 2005 - 9:07:00 PM, Reviewed by: Dr.

"In our simulations, when the length is 25 glutamines, no beta helix forms. At 45, a large majority show beta helix formation. And it appears that 37 glutamines marks a transition, as only a small number of beta helices are formed."

 
New research from the University of North Carolina at Chapel Hill School of Medicine points to the possible molecular origin of at least nine human diseases of nervous system degeneration.

These neurodegenerative diseases, including Huntington's disease, share an abnormal deposit of proteins inside nerve cells. This deposition of protein results from a kind of genetic stutter within the cell's nucleus asking for multiple copies of the amino acid glutamine, a building block of protein structure. These disorders are collectively known as polyglutamine diseases. Along with Huntington's, these diseases include spinobulbar muscular atrophy; spinocerebellar ataxia types 1, 2, 3, 6, 7 and 17; and dentatorubral-pallidoluysian atrophy, or Haw River Syndrome.

Haw River Syndrome is a genetic brain disorder first identified in 1998 in five generations of a family having ancestors born in Haw River, N.C. Scientists are uncertain if protein deposition causes nerve cells to deteriorate and die. This result suggests that abnormally long glutamine tracts render their host protein toxic to nerve cells.

"Polyglutamine expansion greater than 35 to 40 repeats is definitely a key player in disease etiology and, perhaps, cell death," said Dr. Nikolay V. Dokholyan, assistant professor of biochemistry and biophysics at UNC.

In their new study, Dokholyan and UNC co-authors sought to determine why a correlation exists between polyglutamine expansion length and nerve cell death, or disease. They hypothesized that expansion of glutamines results in alternative structures forming within the protein that compete with its normal structure and function.

"As a result, the protein cannot function properly and, possibly, aggregates," Dokholyan said. In other words, an abnormally long sequence of glutamines might take on a shape that prevents the host protein from "folding" or coiling into its functional three-dimensional shape. All protein molecules are simple unbranched chains of amino acids; proper folding into an intricate shape enables these molecules to perform their biological function.

Researchers used computer simulations to mimic polyglutamine behavior. The UNC study showed that when the number of glutamine repeats exceeds a critical value, the glutamines tend to take on a specific shape in the protein called a beta helix. Moreover, the tendency to form a beta helix increases as glutamine tract length becomes longer.

"In our simulations, when the length is 25 glutamines, no beta helix forms. At 45, a large majority show beta helix formation," Dokholyan said. "And it appears that 37 glutamines marks a transition, as only a small number of beta helices are formed."

"Our philosophy in general has been that many diseases have underlying molecular etiology.
 

- The findings are published in PLoS Computational Biology, an open-access journal published by the Public Library of Science (PloS) in partnership with the International Society for Computational Biology.
 

www.med.unc.edu

 
Subscribe to Neurodegenerative Diseases Newsletter
E-mail Address:

 

Co-authors with Dokholyan are graduate student Sagar D. Khare, postdoctoral researcher Dr. Feng Ding and Kenneth N. Gwanmesia, undergraduate student in physics and pre-engineering at Delaware State University.

Funding for the research came from the Muscular Dystrophy Association and the March of Dimes Birth Defects Foundation.


Related Neurodegenerative Diseases News

3-D forms link antibiotic resistance and pantothenate kinase associated neurodegeneration
New biomarkers could help doctors spot neurodegenerative diseases
Nitration Linked to Oxidative Stress Related Damage in Neurodegenerative Disorders
REM sleep disorders can indicate early neurodegeneration
Neurodenegerative diseases mechanisms linked to transport proteins
New Tools Developed for Studying Neurodegenerative Brain Disorders
New Tools Developed for Studying Neurodegenerative Brain Disorders
Research Suggests Abraham Lincoln Suffered from Spinocerebellar Ataxia type 5 (SCA5)
Discovery may improve treatment of neurodegenerative diseases
Possible molecular origin of nervous system degeneration diseases


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us