XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
  Diabetes
   NIDDM
   Insulin Resistance
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

NIDDM Channel
subscribe to NIDDM newsletter

Latest Research : Endocrinology : Diabetes : NIDDM

   DISCUSS   |   EMAIL   |   PRINT
High-fat diet supresses GnT-4a activity to cause type 2 diabetes
Dec 30, 2005 - 3:41:00 PM, Reviewed by: Dr. Sanjukta Acharya

"If our findings can be applied to humans, they should give us important insights into how type 2 diabetes may be prevented and treated"

 
Howard Hughes Medical Institute researchers have discovered a molecular link between a high-fat, Western-style diet, and the onset of type 2 diabetes. In studies in mice, the scientists showed that a high-fat diet disrupts insulin production, resulting in the classic signs of type 2 diabetes.

In an article published in the December 29, 2005, issue of the journal Cell, the researchers report that knocking out a single gene encoding the enzyme GnT-4a glycosyltransferase (GnT-4a ) disrupts insulin production. Importantly, the scientists showed that a high-fat diet suppresses the activity of GnT-4a and leads to type 2 diabetes due to failure of the pancreatic beta cells.

The experiments point to a mechanistic explanation for why failing pancreatic beta cells don't sense glucose properly and how that can lead to impaired insulin production, said Jamey Marth, a Howard Hughes Medical Institute investigator at the University of California, San Diego (UCSD). Marth and first author Kazuaki Ohtsubo at UCSD collaborated on the studies with researchers from the Kirin Brewery Co. Ltd., and the University of Fukui, both in Japan.

The discovery of the link between diet and insulin production offers new information that may aid in the development of treatments that target the early stages of type 2 diabetes. In its earliest phases, the disease causes failure of insulin-secreting beta cells in the pancreas, which leads to elevated blood glucose levels. As the disease progresses, the insulin-secreting beta cells overcompensate for the elevated blood glucose, and eventually pump out too much insulin. This leads to insulin resistance and full-blown type 2 diabetes.

The new studies suggest that people with an inherited predisposition to type 2 diabetes might have variations in the gene for GnT-4a, said the researchers. Worldwide, more than 200 million people have type 2 diabetes, and close to 20 million people in the United States have been diagnosed with the disorder.

Marth and his colleagues began their studies hoping to learn more about the function of protein glycosylation in the pancreas. They focused on the function of GnT-4a, in part, because it is highly expressed in the pancreas. GnT-4a is a type of enzyme known as a glycosyltransferase that attaches sugar-like molecules called glycans to proteins in a process called glycosylation. Glycans are essential for the proper function of many proteins.

GnT-4a was known to maintain glucose transporters on the surface of beta cells in the pancreas. Those transporters, such as Glut-2, play a crucial role in allowing the beta cell to sense how much glucose is in the blood. Transport of glucose across the cell membrane into pancreatic beta cells triggers insulin secretion.

The new studies showed that in the absence of sufficient GnT-4a enzyme, Glut-2 lacks an attached glycan that is required for it to be expressed at the cell membrane. Without that glycan, Glut-2 leaves the cell surface and becomes internalized, where it can no longer transport glucose into the cell. In turn, this failure impairs insulin secretion, causing type 2 diabetes in the mice.

"What was really astounding to us, however, was that when we fed normal mice a high-fat diet, we saw this same mechanism of pathogenesis with attenuation of GnT-4a enzyme levels, reduced Glut-2 glycosylation, and loss of cell surface Glut-2 expression," said Marth. "This finding may explain the loss of Glut-2 commonly observed in type 2 diabetes. For example, transcriptional control of GnT-4a expression may underlie the pathogenesis of type 2 diabetes in human mature onset diabetes of the young (MODY), and perhaps in response to leptin signaling deficiency in db mice."

In addition, variations in susceptibility to type 2 diabetes may result from inherited differences in the gene for GnT-4a that may ultimately affect its level or activity. These findings could have important clinical implications because reduced GnT-4a expression has been observed by other researchers in tissue samples from humans with diabetes. "If you could somehow stimulate production of this enzyme, you might be able to render animals, and perhaps humans, resistant to high-fat diet-induced diabetes," said Marth.

To explore such possible clinical applications, Marth and his colleagues are now testing whether over-expression of the GnT-4a gene in transgenic mice makes them resistant to diabetes induced by a high-fat diet or by transcriptional factor mutations that cause MODY.

"If our findings can be applied to humans, they should give us important insights into how type 2 diabetes may be prevented and treated," he said.

While a deficiency of insulin can cause diabetes, too much insulin can also be harmful, and has been found to contribute to the pathogenesis of cancer, cardiovascular disease, ovarian diseases, and Alzheimer's disease. "It may be that suppressing insulin production to some degree could be beneficial in such disorders, and that could theoretically be achieved by inhibiting the GnT-4a glycosyltransferase," Marth said.
 

- December 29, 2005, issue of the journal Cell
 

www.hhmi.org

 
Subscribe to NIDDM Newsletter
E-mail Address:

 



Related NIDDM News

Researchers reveal mechanisms behind Thiazolidinediones in type 2 diabetes
High-fat diet supresses GnT-4a activity to cause type 2 diabetes
Low blood glucose levels may complicate gastric bypass surgery
Muraglitazar found to increase adverse cardiovascular events
Insulin's role in blocking release of energy
TORC2 - Key regulator of blood glucose levels discovered
Panel Recommends Muraglitazar for the Treatment of Type 2 Diabetes
Persons at risk for type 2 diabetes have lower rate of cellular energy production
Sirt1 protein enhances the secretion of Insulin


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us