XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
  Osteoporosis
  Osteomyelitis
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Orthopedics Channel
subscribe to Orthopedics newsletter

Latest Research : Orthopedics

   DISCUSS   |   EMAIL   |   PRINT
Using gene therapy to accelerate damaged muscle regeneration
Jun 5, 2006 - 4:44:00 PM, Reviewed by: Dr. Priya Saxena

"Based on our previous studies, we expect that gene-therapy treated cells will continue to overproduce myostatin propeptide for at least two years. Since the remodeling phase of skeletal muscle healing is a long-term process, we believe that prolonged expression of myostatin propeptide will continue to contribute to recovery of injured skeletal muscle by inducing an increase in muscle mass and minimizing fibrosis. This could significantly reduce the amount of time an athlete needs to recover and result in a more complete recovery,"

 
University of Pittsburgh School of Medicine researchers have successfully used gene therapy to accelerate muscle regeneration in experimental animals with muscle damage, suggesting this technique may be a novel and effective approach for improving skeletal muscle healing, particularly for serious sports-related injuries.

Skeletal muscle injuries are the most common injuries encountered in sports medicine. Although such injuries can heal spontaneously, scar tissue formation, or fibrosis, can significantly impede this process, resulting in incomplete functional recovery. Of particular concern are top athletes, who, when injured, need to recover fully as quickly as possible.

In this study, the Pitt researchers injected mice with a gene therapy vector containing myostatin propeptide--a protein that blocks the activity of the muscle-growth inhibitor myostatin--three weeks prior to experimentally damaging the mice's skeletal muscles. Four weeks after skeletal muscle injury, the investigators observed an enhancement of muscle regeneration in the gene-therapy treated mice compared to the non-gene-therapy treated control mice. There also was significantly less fibrous scar tissue in the skeletal muscle of the gene-therapy treated mice compared to the control mice.

According to corresponding author Johnny Huard, Ph.D., the Henry J. Mankin Endowed Chair and Professor in Orthopaedic Surgery, University of Pittsburgh School of Medicine, and Director of the Stem Cell Research Center of Children's Hospital of Pittsburgh, this approach offers a significant, long-lasting method for treating serious, sports-related muscle injuries.

"Based on our previous studies, we expect that gene-therapy treated cells will continue to overproduce myostatin propeptide for at least two years. Since the remodeling phase of skeletal muscle healing is a long-term process, we believe that prolonged expression of myostatin propeptide will continue to contribute to recovery of injured skeletal muscle by inducing an increase in muscle mass and minimizing fibrosis. This could significantly reduce the amount of time an athlete needs to recover and result in a more complete recovery," he explained.
 

- These findings were presented at the American Society of Gene Therapy annual meeting in Baltimore, May 31 to June 4.
 

www.upmc.edu

 
Subscribe to Orthopedics Newsletter
E-mail Address:

 

Others involved in this study include, Jinhong Zhu, M.D., Yong Li, M.D., Ph.D., of the Growth and Development Laboratory, Children's Hospital of Pittsburgh; and Chunping Qiao, M.D., and Xiao Xiao, M.D., Ph.D., of the Molecular Therapies Laboratory, department of orthopaedic surgery, University of Pittsburgh School of Medicine.

Related Orthopedics News

Modifying NFATc1 Triggers Bone Production
'Magic formula' accurately predicts fracture risk in osteoporotic women
Calcium supplements fail to prevent bone fractures in children
Estrens might not be the answer for osteoporosis
Increasing NFATc1 activity causes massive bone accumulation
Second-Hand Smoke, First-Hand Problem
Using gene therapy to accelerate damaged muscle regeneration
Low carbohydrate diet did not increase bone loss
Teriparatide to be tested for osteogenesis imperfecta
A novel vertebroplasty technique strengthens vertebrae after removing spinal tumors


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us