XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
  Parkinson's
   Rotenone
  Dementia
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Parkinson's Channel
subscribe to Parkinson's newsletter

Latest Research : Aging : Parkinson's

   DISCUSS   |   EMAIL   |   PRINT
New route to Parkinson's found in cells' 'garbage disposal' system
Dec 16, 2004 - 4:50:00 PM, Reviewed by: Dr.



 
Researchers have known that mutations in a key gene called parkin are a major cause of Parkinson's disease (PD). Now they have discovered a new mechanism by which the parkin gene can be compromised, a finding that they say could lead to new drugs for the disorder.

Andrea Lozano, Senior Scientist at the Toronto Western Research Institute, of University Health Network and Professor of Surgery at the University of Toronto and colleagues found that the protein produced by a gene called BAG5 inhibits parkin activity and the action of another protein, called Hsp70, a "chaperone" that works with parkin. They found in studies with rats that BAG5 enhances the death of the dopaminergic neurons targeted by Parkinson's and that inhibiting the gene reduces such death.

Parkin is part of the cell's "garbage disposal" system that rids the cell of unwanted proteins by degrading them. Mutations of parkin eliminate its ability to chemically "tag" such proteins to designate them for destruction in the cell's proteasome--a process called ubiquitinylation. Loss of such ability causes such protein garbage to aggregate into lethal clumps in neurons--a hallmark of many neurodegenerative diseases. In the brain, the parkin protein works with Hsp70, which helps correct the folding of misfolded proteins.

BAG5 is one of a family of BAG proteins known to interact with other proteins to aid a variety of cell processes. The structure of BAG5 led Lozano and colleagues to explore whether it might play a role in the proteasome, along with parkin and Hsp70.

Their experiments revealed that BAG5 was activated when dopaminergic neurons were injured, suggesting a role in neurodegeneration. Experiments also revealed that BAG5 inhibits Hsp70 and interacts directly with parkin, inhibiting its activity. This inhibition, they found, enhances the formation of protein aggregates, and this formation was inhibited when the researchers shut down the activity of BAG5. In other test tube studies, the researchers also found that BAG5 inhibited parkin's ability to protect cells against proteasome dysfunction and cell death.

In experiments with rats, the researchers found that BAG5 enhanced the degeneration of dopaminergic neurons and that inhibiting BAG5 increased neuronal survival.

"Based on our findings, we propose a novel mechanism for neurodegeneration in which BAG5 interacts with both parkin and Hsp70, resulting in decreased parkin and Hsp70 function, two outcomes that are deleterious to cell survival," concluded the researchers. "Given the role of BAG5 in modulating ubiquitinylation, protein aggregation, and cell death, it may serve as a useful therapeutic target for neurodegenerative diseases such as PD."

###

The other members of the research team include Suneil K. Kalia, Sang Lee, and Li Liu, of the Toronto Western Research Institute of the University of Toronto; Patrice D. Smith, Stephen J. Crocker, and David S. Park, of the Neuroscience Research Institute of the University of Ottawa; Thorhildur E. Thorarinsdottir and Edward A. Fon, of the Centre for Neuronal Survival of McGill University; and John R. Glover, of the Department of Biochemistry of the University of Toronto. This work was supported by the Canadian Institutes of Health Research (CIHR) (S.K.K., J.R.G., E.A.F., D.S.P., A.M.L.); Michael J. Fox Foundation (T.E.T.); and Parkinson's Society of Canada (D.S.P.).

Suneil K. Kalia, Sang Lee, Patrice D. Smith, Li Liu, Stephen J. Crocker, Thorhildur E. Thorarinsdottir, John R. Glover, Edward A. Fon, David S. Park, and Andres M. Lozano: "BAG5 Inhibits Parkin and Enhances Dopaminergic Neuron Degeneration"

The context and implications of this work are discussed in a Preview by Kenny K.K. Chung and Ted M. Dawson of the Johns Hopkins University School of Medicine.
 

- Publishing in Neuron, Volume 44, Number 6, December 16, 2004, pages 931�945
 

neuron.org

 
Subscribe to Parkinson's Newsletter
E-mail Address:

 



Related Parkinson's News

Laser probe of a brain pigment's anatomy may offer insight into Parkinson's disease
Novel blood test for early detection of Parkinson's, receives national recognition
New genetic model for Parkinson's disease
Expertise In Brain Stimulation Therapy May Improve Outcomes in Parkinson's Disease
Pesticide Dieldrin Linked to Increased Risk of Parkinson's Disease
ER trafficking defect caused by alpha-synuclein accumulation implicated in Parkinson's
Pesticides exposure associated with Parkinson's disease
Tuberculosis drug PAS may cure Parkinson's-like illness
Stabilizing microtubules with L-AP4 reduces rotenone toxicity
New Guidelines Improve Diagnosis and Quality of Life for People with Parkinson Disease


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us