|
Last Updated: Nov 18, 2006 - 12:32:53 PM |
Latest Research
:
Infectious Diseases
:
Malaria
:
Plasmodium
AgDscam gene Holds the Key to Broad-Based Pathogen Recognition
Anything that's alive runs the risk of infection. How you respond to infection, however, depends on where you sit on the evolutionary tree. Humans and other vertebrates can fend off billions of pathogens by routinely recombining bits of genes for surface molecules on the cells charged with pathogen recognition. Insects and other invertebrates rely to a large degree on the pathogen recognition molecules (called pattern recognition receptors) they were born with. When a pattern recognition receptor detects a pathogen�based on what's known as its pathogen-associated molecular pattern�the receptor can launch a direct attack that either engulfs the invader, through encapsulation or phagocytosis, or triggers signaling pathways that regulate immune system genes involved in killing the pathogen.
Jun 23, 2006 - 12:24:00 AM
Latest Research
:
Infectious Diseases
:
Malaria
:
Plasmodium
Genes responsible for malaria parasite's survival pin pointed
Despite a century of effort to globally control malaria, the disease remains endemic in many parts of the world. With some 40 percent of the world's population living in these areas, the need for more effective vaccines and treatments is profound. The spread of drug-resistance adds to the urgency.
Jun 20, 2006 - 7:12:00 PM
Latest Research
:
Infectious Diseases
:
Malaria
:
Plasmodium
Malaria parasite plasmodium impairs key immune system cells
Plasmodium, the parasite responsible for malaria, impairs the ability of key cells of the immune system to trigger an efficient immune response. This might explain why patients with malaria are susceptible to a wide range of other infections and fail to respond to several vaccines. In a study published today in the open access journal Journal of Biology, researchers show that if dendritic cells, the key cells involved in initiating immunity, are exposed to red blood cells infected with Plasmodium chabaudi, they initiate a sequence of events that result in compromised antibody responses. The researchers show that this is due to the presence of hemozoin, a by-product of the digestion of hemoglobin by Plasmodium, in infected red blood cells. These observations also explain why vaccines for many diseases are so ineffective during malaria infection, and suggest that the use of preventive anti-malarial drugs before vaccination may improve vaccine-induced protection.
Apr 12, 2006 - 1:36:00 PM
Latest Research
:
Infectious Diseases
:
Malaria
:
Plasmodium
How Plasmodium falciparum sneaks past the human immune system
The world's deadliest malaria parasite, Plasmodium falciparum, sneaks past the human immune system with the help of a wardrobe of invisibility cloaks. If a person's immune cells learn to recognize one of the parasite's many camouflage proteins, the surviving invaders can swap disguises and slip away again to cause more damage. Malaria kills an estimated 2.7 million people annually worldwide, 75 percent of them children in Africa. Howard Hughes Medical Institute (HHMI) international research scholars in Australia have determined how P. falciparum can turn on one cloaking gene and keep dozens of others silent until each is needed in turn. Their findings, published in the December 28, 2005, issue of Nature, reveal the mechanism of action of the genetic machinery thought to be the key to the parasite's survival.
Dec 29, 2005 - 4:23:00 PM
Latest Research
:
Infectious Diseases
:
Malaria
:
Plasmodium
How Plasmodium breaks in to blood cells
Plasmodium falciparum, the most lethal malaria parasite, is a housebreaking villain of the red blood cell world. Like a burglar searching for a way in to his targeted premises, the parasite explores a variety of potential entry points to invade the red blood cells of its human victims. When a weak point is found, the intrusion proceeds.
Aug 30, 2005 - 1:17:00 AM
<< prev
next >>
|