XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Radiology Channel
subscribe to Radiology newsletter

Latest Research : Radiology

   DISCUSS   |   EMAIL   |   PRINT
Training on virtual 'patient' improves carotid angiography skills
Apr 28, 2006 - 2:14:00 AM, Reviewed by: Dr. Sanjukta Acharya

"In carotid angiography, where we are introducing catheters into the blood vessels that feed the brain, if a little piece of material breaks off or you do it incorrectly and knock a piece of blood clot or atherosclerotic plaque off the artery while you are putting the catheter in, it goes downstream and goes to the brain and causes a stroke. And that's a devastating event,"

 
Cardiologists can learn to perform risky catheter procedures such as carotid angiography on a virtual patient simulator, rather than on real patients, according to a new study in the May 2, 2006, issue of the Journal of the American College of Cardiology.

"Virtual reality simulation technology has advanced to the point where we can actually use a virtual environment and have the trainee learn in a very 'patient-safe' way in a virtual patient environment and make mistakes on a virtual patient versus doing it on a real patient," said Christopher U. Cates, M.D., F.A.C.C., F.S.C.A.I. from the Emory University School of Medicine in Atlanta, Georgia.

Twenty interventional cardiologists participating in the Emory NeuroAnatomy Carotid Training program underwent an instructional course on carotid angiography and then performed five serial simulated carotid angiograms on the Vascular Interventional System Training (VIST) VR simulator.

The cardiologists committed fewer catheter errors, while performing the virtual procedure in less time, and subjecting the virtual patient to less X-ray imaging and smaller injections of contrast agent during the final run compared to the first one.

Dr. Cates noted that the study looked at only one specific model of simulator, the Procedicus Vascular Interventional System Trainer (VIST) made by Mentice AB in Gothenburg, Sweden. The company was not involved in the design or funding of this study. Dr. Cates said the performance of other simulators is not necessarily the same and would have to be studied individually before being used to measure the performance of doctors.

Trainees using the simulator use catheter controls that are identical to those on the ends of the catheters they use in actual procedures, but the other end of the catheters interact with sensors that feed movement data into a powerful computer. The trainees feel the "catheter" move and they watch the progress of the "tip" on a monitor image just like the fluoroscope X-ray image they would watch during and actual procedure. Cardiologists who have used the simulator say that what they see and feel is very realistic.

Carotid angiography, and the related procedure of carotid stenting, is a technically challenging procedure. The procedure involves threading thin catheters through blood vessels into a carotid artery in the neck. It is performed by a relatively small number of cardiologists, in part because of its inherent risks.

"In carotid angiography, where we are introducing catheters into the blood vessels that feed the brain, if a little piece of material breaks off or you do it incorrectly and knock a piece of blood clot or atherosclerotic plaque off the artery while you are putting the catheter in, it goes downstream and goes to the brain and causes a stroke. And that's a devastating event," Dr. Cates said.

Previously, practitioners learning new catheter procedures practiced on animals, cadavers or mechanical models and then were supervised as they worked on their first live patients. The researchers are currently doing studies to see if the patients of practitioners trained on this simulator have better clinical outcomes. But the researchers say one advantage of simulator training is already apparent. The progress of trainees (their "learning curve") is tracked objectively, so evaluators don't have to rely on the subjective reports of an instructor.

This study is the first to actually measure the "learning curve" of doctors trying a new procedure, documenting increasing proficiency and declining error rates of individual trainees.

"And so we now have some objectivity in how doctors are doing in their training versus the subjectivity of a mentor looking over the shoulder of a trainee doing the procedure and saying, 'I think he's doing a pretty good job,'" Dr. Cates said. "We can actually measure the doctor's performance doing the fine tasks in a simulator on a virtual patient and measure his task achievement against a benchmark, say of somebody who is expert in that technique, and show that he can reach that level of proficiency before he actually works on a patient for the first time. And that is a historic breakthrough in medicine."

Dr. Cates predicted that simulator training will become as routine in medicine as it already is in the airline industry and other fields.

"What we are seeing is a paradigm shift in the way we train physicians in procedural-based medicine, from looking over the shoulder of a doctor working on a real patient to where we are going to be able to measure the trainee's learning curve in a virtual environment and a 'patient-safe' environment, and make sure the doctor has reached a level of competence before he then works on his first patient," Dr. Cates said.

William A. Gray, M.D. from Columbia University in New York, New York, who was not connected with this study, said that although simulation is increasingly used in medical training, there is still a need to do basic validation studies to demonstrate repeatability and reliability of results.

"This article is a nice building block in the larger construct of validating simulation. The investigators have successfully demonstrated that physicians can not only be trained on a simulator; but also that the effects of training can be measured on a simulator through various metrics, including contrast volume, fluoroscope time, procedure time and so on. That is an important first step in the process of validation of simulation," Dr. Gray said.

Dr. Gray added that studies are needed that would look at whether simulators can distinguish between expert and novice practitioners. Also, he says it would be useful to know whether simulators can identify the specific strengths and weaknesses of individual physicians, in order to tailor further training and education.
 

- May 2, 2006, issue of the Journal of the American College of Cardiology
 

www.acc.org

 
Subscribe to Radiology Newsletter
E-mail Address:

 



Related Radiology News

New way of tracking muscle damage from radiation
Audit shows excellent performance of radiologists in interpreting mammograms
Comparing MDCT and digital radiography in orthopedic patients
New MRI technique shows emphysema in asymptomatic smokers
Safety profile for CT colonography (CTC) favorable
Modulating tube current to account for body symmetry reduces radiation exposure in CT
Training on virtual 'patient' improves carotid angiography skills
Radiologic signs more than double sensitivity of MRIs
CT Enteroclysis Has a Superior Diagnostic Value in Crohn's Disease
Characteristic Cardiac Scar Pattern Predicts Risk Of Fatal Arrhythmias


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us