XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
  Stem Cell Research
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Stem Cell Research Channel
subscribe to Stem Cell Research newsletter

Latest Research : Embryology : Stem Cell Research

   DISCUSS   |   EMAIL   |   PRINT
Harvard to Create Human Embryonic Stem Cell Lines
Jun 7, 2006 - 7:57:00 PM, Reviewed by: Dr. Priya Saxena

"All human cells, even individual sperm and eggs, are 'living.' The relevant question is 'when does personhood begin?' That's a valid theological or philosophical question, but from the scientific perspective, this work holds enormous potential to save lives, cure diseases, and improve the health of millions of people."

 
After more than two years of intensive ethical and scientific review, Harvard Stem Cell Institute (HSCI) researchers at Harvard and Children's Hospital Boston have been cleared to begin experiments using Somatic Cell Nuclear Transfer (SCNT) to create disease-specific stem cell lines in an effort to develop treatments for a wide range of now-incurable conditions afflicting tens of millions of people.

The work is being entirely supported with private funds because of the federal restrictions on human embryonic stem cell work. If successful, it will mark a major step forward in the effort to use stem cells to treat chronic diseases.

Harvard University Provost Steven E. Hyman said during a June 6 telephone press conference that the work has been the subject of "more than two years of thoughtful, intensive review by as many as eight different Institutional Review Boards and Stem Cell oversight committees at five different institutions," including Harvard, Children's Hospital, Partners Health Care, Brigham and Women's Hospital, Boston IVF, and Columbia University.

Harvard University President Lawrence H. Summers called the approvals "a seminal event in the University's effort to advance this tremendously promising area of science and fulfill that promise as quickly as possible for the countless patients suffering from diabetes, Parkinson's disease, heart disease, cancers, and a host of other illnesses.

"While we understand and respect the sincerely held beliefs of those who oppose this research, we are equally sincere in our belief that the life-and-death medical needs of countless suffering children and adults justifies moving forward with this research," Summers said, referring to the controversy over embryonic stem cell work.

Harvard to Create Human Embryonic Stem Cell Lines
Harvard University Stem Cell Institute researchers (left to right) George Daley, Doug Melton and Kevin Eggan speak to the media about their plan to proceed with SCNT (somatic cell nuclear transfer) in embryonic stem cells. (Credits: Justin Ide/Harvard News Office)

Somatic Cell Nuclear Transfer involves removing nuclei, which contain the cellular DNA (genes) from egg cells, and replacing them with the nuclei of donor cells. The resulting cell is subject to a chemical, or electrical, charge that triggers cell division and the creation of an embryo genetically identical to the donor of the nuclei. In the HSCI experiments, aimed at understanding diseases, the nuclei will be taken from skin cells donated by patients suffering from diabetes, blood diseases, and neurodegenerative diseases.

Research involving human embryonic stem cells is controversial because extracting the cells - which can differentiate into any cell or tissue type in the body - requires the destruction of a human embryo, albeit a blastocyst of only a few hundred cells, literally half the size of the period at the end of this sentence. Melton, in collaboration with Kevin Eggan and Douglas Powers of Boston IVF , has already created 31 stem cell lines using left-over frozen embryos donated by couples who went through in vitro fertilization (IVF), and has distributed those stem cell lines to scientists around the world.

Embryonic stem cells are the master cells of the body, capable of developing into any tissue type. The researchers will seek to learn how to control that differentiation, with a goal of eventually creating lines of cells that can, for instance, produce insulin-making islet cells in the pancreas, which are depleted or absent in diabetics. Melton and Eggan's first nuclear transfer experiments will attempt to create diabetes specific stem cells by removing the nuclei from skin cells taken from diabetic volunteers at the Naomi Berrie Diabetes Center at Columbia University Medical Center and inserting them into donor eggs from which the nuclei have been removed.

In addition to collaborating with Melton on this project, Eggan, whose work is supported by the Stowers Medical Institute, is seeking approvals to study diseases of the nervous system.

Children's Hospital researcher and HSCI Executive Committee member George Daley explains that the ultimate goal of all three HSCI researchers, once they understand how embryonic stem cells are programmed to differentiate into specific cell types, is to literally move a patient's disease into a petri [laboratory] dish. "We plan to take skin cells from a patient with a genetic disease, like sickle cell anemia or any one of more than 40 bone marrow disorders, and reprogram that skin cell back to its embryonic state. We can then study the disease using these cells, correct their genetic defects and coax the repaired cells to become normal blood cells. Our ultimate goal is to return the repaired cells to the patients." Egg donation and reimbursement

Research using human embryonic stem cells is ineligible for federal funding, including grants from the National Institute of Health; only private money may be used to support SCNT research. Under the protocol approved by the Institutional Review Board (IRB) of Harvard's Faculty of Arts and Science, and the IRB of Boston IVF, where the ova will be collected for Melton and Eggan's work, donors will not be paid. The committees struggled to ensure not only that potential donors would understand all potential risks associated with ova donation, but would also understand that they will be contributing to basic science experiments, and that it will be many years - at best - before patients benefit directly from the work.

Speaking of the IRB decisions at Harvard, Children's Hospital, Boston IVF, Brigham and Women's Hospital - where Daley is obtaining ova for his experiments - and Columbia University allowing the Harvard Stem Cell Institute SCNT work to proceed, Melton says, "I think Harvard University has done the right thing by giving this research very careful review by multiple boards, and allowing plenty of time for reconsideration and reflection.
 

- Harvard Stem Cell Institute
 

www.hsci.harvard.edu

 
Subscribe to Stem Cell Research Newsletter
E-mail Address:

 

The Harvard Stem Cell Institute, co-directed by Melton, a Howard Hughes Medical Institute investigator, and David Scadden, a professor of medicine at Harvard Medical School and director of the Center of Regenerative Medicine at Massachusetts General Hospital, is a unique collaborative effort that includes 99 principal investigators and hundreds of additional scientists in laboratories at Harvard University and at many of Harvard's affiliated hospitals. The institute is dedicated to advancing all forms of stem cell science from laboratory bench to patient bedside as quickly as possible.

Related Stem Cell Research News

Neural stem cells derived from human embryonic stem cells carry abnormal gene expression
Neurons grown from embryonic stem cells restore function in paralyzed rats
New stem-cell findings can help the body to cure itself
Putting avian transgenics on a par with transgenic mice
Harvard to Create Human Embryonic Stem Cell Lines
Stem Cell Study for Patients with Heart Attack Damage Seeks to Regenerate Heart Muscle
Stem cells - An alternative to skin grafting?
Bone morphogenetic protein 6 (BMP-6) factor stimulates cartilage growth from stem cells
Doctors grow organ from patients' own cells
Stem cells can repair torn tendons or ligaments


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us