XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
  CTVS
  Transplantation
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM

Transplantation Channel
subscribe to Transplantation newsletter

Latest Research : Surgery : Transplantation

   DISCUSS   |   EMAIL   |   PRINT
Costimulation blockade: Will this lead to rejection-free transplants?
Sep 8, 2006 - 5:20:00 PM, Reviewed by: Dr. Rashmi Yadav


"The holy grail of transplantation research is to find a way to produce permanent tolerance without the need for any immunosuppressive medication."


 
Years ago, the idea of attaching a donor limb onto a patient's body would have been the stuff of science fiction. But to date about two-dozen people around the world have received hand transplants. Thomas Tung, M.D., conducts research within this relatively unorthodox realm of surgery, investigating therapies that could potentially allow the body to accept donor tissue without the use of immunosuppressive medication.

A Washington University plastic and reconstructive surgeon at Barnes-Jewish Hospital, Tung has reattached patients' own hands, but he has never performed a hand transplant - he feels the health risks of immunosuppressive drugs are too high to warrant the surgery. But with his research, he is working toward the day when reconstructive surgery can make use of donor tissues without the danger of complications from anti-rejection medication or the risk of tissue rejection.

"Once we figure this out, it's going to open up a new whole field of reconstructive surgery," says Tung, assistant professor of surgery. "It will allow surgeons to replace not just injured hands, but lips, noses, ears, scalp and other specialized tissues anywhere on the body."

To reach this goal, Tung has been researching transplantation of hindlimbs to mice from unrelated donors - but here's the twist - without giving the mice immunosuppressive drugs. At this time, Tung is the only researcher in the United States investigating limb transplantation with this protocol, which uses proteins called costimulation-blocking antibodies.

With current treatment methods, all transplantation patients take medications that reduce the function of their immune systems so their bodies don't reject the foreign tissue. But long-term use of immunosuppressive medication raises the risk of infection and cancer because the weakened immune system is unable to ward off these threats. Furthermore, immune suppression therapy eventually fails, and transplanted organs undergo rejection an average of 10 years after surgery.

"The holy grail of transplantation research is to find a way to produce permanent tolerance without the need for any immunosuppressive medication," Tung says. "That's what I'm investigating with my mouse model."

Tung's work in limb transplantation in many ways parallels research being conducted in organ transplantation. But limb transplantation entails different challenges because it involves several kinds of tissue: skin, muscles, tendons, nerves and bone. Each of these elicits a different degree of response from the recipient.

"It's not entirely predictable that something that is successful in organ transplantation will have the same effect on a limb transplant," Tung says.

In recently published research, Tung demonstrated the effectiveness of costimulation-blocking therapy, which is designed to induce tolerance to the tissues in a transplanted hindlimb but not to globally suppress the immune system.

The mice received an antibody that blocked the action of certain molecules important for the immune system's T cells to attack foreign tissue. According to Tung, this strategy, called costimulation blockade, blocks the immune response to only the donor tissue. The immune system can still react to infections or cancer.

In addition to the costimulation blockade, mice received donor bone marrow, either as an infusion or simply as the marrow present in the bones of the donor hindlimb. Earlier research suggested that donor bone marrow could help induce transplant tolerance, and Tung found that the small amount of bone marrow within the hindlimb was as effective as a large infusion of bone marrow cells given intravenously.

While the costimulation blockade/bone marrow therapy did not result in permanent tolerance of the transplanted hindlimb, it greatly extended the time before the mice rejected the new limb.

In one set of experiments, mice not given a costimulation blockade rejected their new limbs after about 10 days, whereas the muscles and bone of the transplanted limb in blockade-treated mice survived an average of 222 days.

"Research into costimulation blockade is relatively new," Tung says. "And just over the last few years, a half dozen new costimulatory pathways have been recognized. Researchers have found that when you combine several antibodies to block several pathways at once, it may increase the effectiveness of the therapy. That's a big step toward tolerance of transplanted tissue."

The next stage of Tung's research will focus on these new costimulation blockers. In addition, Tung will collaborate with colleague Susan E. Mackinnon, M.D., the Sydney M. Jr. and Robert H. Shoenberg Professor of Surgery and chief of the Division of Plastic and Reconstructive Surgery, to investigate regeneration of nerves in transplanted limbs.

"Patients receiving a hand transplant don't need it to survive -- they are getting it to improve their functionality," Tung says. "If the new hand doesn't work well because of nerve problems, that defeats the purpose of the surgery. I am also involved in research on nerve regeneration, and I would like to use that knowledge to improve regeneration of nerves in limb transplants."
 

-
 

http://medinfo.wustl.edu/

 
Subscribe to Transplantation Newsletter
E-mail Address:

 


Cohen M, Mohanakumar T, Mackinnon SE, Tung TH. Chimerism after vascularized limb versus bone marrow transplantation. Journal of Reconstructive Microsurgery 2006;22:375-384.

Tung TH, Mackinnon SE, Mohanakumar T. Long-term limb allograft survival using anti-CD40L antibody in a murine model. Transplantation 2003;75:644-650.

Funding from the National Institutes of Health and the Howard Hughes Medical Institute supported this research.

Washington University School of Medicine's full-time and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.



Related Transplantation News

Predicting survival in liver transplant patients
SALT protocol improves quality of donor lungs significantly
Costimulation blockade: Will this lead to rejection-free transplants?
Hepatorenal syndrome patients best benefited by a combined liver-kidney transplant
'Domino' transplant program makes best use of altruistic donated kidneys
British doctors carry out transplant with beating heart
Older donor hearts just as good - Research
Another successful face transplant in China
Another Implant of Total Artificial Heart TAH-t
Predicting successful outcomes in living-donor liver transplants


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us