XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
  AIDS
  Influenza
  MRSA
  Tuberculosis
  Shigella
  HCV
  SARS
  Ebola
  Dengue
  Malaria
  Pertussis
  Mumps
  Prion Diseases
  Small Pox
  Anthrax
  Leishmaniasis
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
 
 India
Search

Last Updated: Nov 18, 2006 - 12:32:53 PM
Research Article
PLoS Medicine

Tuberculosis Channel
subscribe to Tuberculosis newsletter

Latest Research : Infectious Diseases : Tuberculosis

   DISCUSS   |   EMAIL   |   PRINT
DC-SIGN expressing alveolar macrophages are preferentially targeted by M. tuberculosis
Nov 15, 2005 - 7:21:00 PM, Reviewed by: Dr.

The authors propose a scenario where complement receptors mediate most of the initial infection of alveolar macrophages in a naïve host, and where once the infection is established DC-SIGN expressing alveolar macrophages become preferential target cells for M. tuberculosis.

 
C-type lectins are carbohydrate-binding cell surface molecules with a wide range of biological functions, many of which are related to immunity. Despite its name, dendritic cell specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) is not only expressed on dendritic cells but also on specialized macrophages in the placenta and lung. A number of pathogens are known to interact with DC-SIGN, and some (including HIV) seem to have evolved to derive advantages from these interactions.

Recent in vitro studies have shown that DC-SIGN can interact with Mycobacterium tuberculosis through a lipoglycan (a molecule composed of sugars and fatty acids) on the mycobacterial envelope called lipoarabinomannan (LAM). Trying to understand the role of DC-SIGN in tuberculosis (TB), Ludovic Tailleux and colleagues have focused on the interaction between M. tuberculosis and DC-SIGN–expressing cells in the lungs of human patients.

The researchers studied a total of 74 individuals, including 40 with TB, 11 with sarcoidosis, 14 with asthma, and nine control participants without active lung infection or inflammation. All patients underwent bronchoalveolar lavage (BAL), a procedure that yields cells and proteins from the lower respiratory tract. The researchers then examined BAL cell populations after staining for various cell-surface markers by flow cytometry, and found that, in individuals without TB, very few alveolar macrophages (an average of 3%) expressed DC-SIGN. In contrast, an average of 30% (and up to 70%) of macrophages from patients with TB expressed the lectin.

Tailleux and colleagues then incubated alveolar macrophages from a patient without TB ex vivo with M. tuberculosis, which resulted in infection of a subset of the cells. When the researchers examined DC-SIGN expression, they found that both infected and noninfected (bystander) cells in the population started to express DC-SIGN. The effect on bystander cells suggests that soluble factors from the microbe and/or the infected cells can induce DC-SIGN expression. Further functional ex vivo studies with cells from human patients indicated that DC-SIGN expression renders alveolar macrophages more susceptible to infection.

The authors propose a scenario where complement receptors mediate most of the initial infection of alveolar macrophages in a naïve host, and where—once the infection is established—DC-SIGN–expressing alveolar macrophages become preferential target cells for M. tuberculosis. Future work will be focused on identifying the soluble factors involved, and on determining whether DC-SIGN induction is an essential part of TB pathogenesis.
 

- (2005) DC-SIGN and Lung Pathogenesis in Patients with Tuberculosis. PLoS Med 2(12): e410
 

Read Research Article (Open Access) at PLoS Medicine Journal Website

 
Subscribe to Tuberculosis Newsletter
E-mail Address:

 

DOI: 10.1371/journal.pmed.0020410

Published: November 15, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License. PLoS Medicine is an open-access journal published by the nonprofit organization Public Library of Science.


Related Tuberculosis News

Emergence of highly drug-resistant tuberculosis strains requires urgent action
Treating populations infected with HIV and latent TB could speed the emergence of drug-resistant TB
Solution to TB epidemic may lie in protective Heme oxygenase 1 protein
Explaining Why People of African Descent Are More Vulnerable to TB
Indian Scientists Identify Key Genes in Tuberculosis Infection
PA-824 holds promise for shortening the TB treatment regimen
DC-SIGN expressing alveolar macrophages are preferentially targeted by M. tuberculosis
Tuberculosis Still a Risk for Patients on Anti-retrovirals
Evolutionary history of tuberculosis is shaped by human migration patterns
TB vaccines will fail in developing countries


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us