RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
  Anorexia Nervosa
  Anxiety
  Bulimia
  CFS
  Child Psychiatry
  Depression
  Forensic Psychiatry
  Learning-Disabilities
   Autism
  Mood Disorders
  Neuropsychiatry
  Peri-Natal Psychiatry
  Personality Disorders
  Psychology
  Psychoses
  Psychotherapy
  Sleep Disorders
  Substance Abuse
  Suicide
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Autism Channel

subscribe to Autism newsletter
Latest Research : Psychiatry : Learning-Disabilities : Autism

   EMAIL   |   PRINT
Children with Autism have Different Immune System Responses

May 6, 2005 - 3:54:00 PM
"Understanding the biology of autism is crucial to developing better ways to diagnose and treat it. While impaired communication and social skills are the hallmarks of the disorder, there has not yet been strong scientific evidence that the immune system is implicated as well. We now need to design carefully controlled studies that tell us even more about the way in which a dysfunctional immune system may or may not play a role in the disorder itself."

 
[RxPG] A new study by researchers at the University of California, Davis, M.I.N.D. Institute and the NIEHS Center for Children's Environmental Health demonstrate that children with autism have different immune system responses than children who do not have the disorder. This is important evidence that autism, currently defined primarily by distinct behaviors, may potentially be defined by distinct biologic changes as well.

The study was released at the 4th International Meeting for Autism Research (IMFAR) - a meeting of autism scientists started by Cure Autism Now, the UC Davis M.I.N.D. Institute and the National Alliance for Autism Research to accelerate knowledge of this increasingly common and perplexing disorder. It is estimated that autism now affects 1 in every 166 children.

"Understanding the biology of autism is crucial to developing better ways to diagnose and treat it," said Judy Van de Water, associate professor of rheumatology, allergy and clinical immunology at the UC Davis School of Medicine and the UC Davis M.I.N.D. Institute. "While impaired communication and social skills are the hallmarks of the disorder, there has not yet been strong scientific evidence that the immune system is implicated as well. We now need to design carefully controlled studies that tell us even more about the way in which a dysfunctional immune system may or may not play a role in the disorder itself."

Van de Water, along with co-investigator of the study Paul Ashwood, assistant professor of medical microbiology and immunology at the UC Davis M.I.N.D. Institute, isolated immune cells from blood samples taken from 30 children with autism and 26 typically developing children aged between two and five years of age. The cells from both groups were then exposed to bacterial and viral agents that usually provoke T-cells, B cells and macrophages - primary players in the immune system.

Of the agents tested in the study - tetanus toxoid, lippopolysaccharide derived from E. coli cell walls, a plant lectin known as PHA, and a preparation of the measles, mumps and rubella vaccine antigens - the researchers found clear differences in cellular responses between patients and controls following exposure to the bacterial agents and PHA.

In response to bacteria, the researchers saw lower levels of protein molecules called cytokines in the group with autism. Cytokines function as mediators of the immune response, carrying messages between B, T and other immune cells. They also are known to be capable of having profound effects on the central nervous system, including sleep and the fever response. Immune system responses to PHA, in contrast, produced more varied cytokine levels: Higher levels of certain cytokines and lower levels of others.

According to Van de Water and Ashwood, these studies illustrate that under similar circumstances, the cytokine responses elicited by the T-cells, B-cells, and macrophage cell populations following their activation differs markedly in children with autism compared to age-matched children in the general population. Cytokines are known to affect mood and behavior, and while their specific role in the development of autism remains unclear, the potential connection is an intriguing area of research that warrants further investigation.

"This study is part of a larger effort to learn how changes in immune system response may make some children more susceptible to the harmful effects of environmental agents," said Kenneth Olden, director of the National Institute of Environmental Health Sciences, the federal agency that provided funding for the study. "A better understanding of the connection between altered immune response and autism may lead to significant advances in the early detection, prevention and treatment of this complex neurological disorder."

"We would like to take these findings and explore whether, for example, the cytokine differences are specific to certain subsets of patients with autism, such as those with early onset, or those who exhibit signs of autism later during development," Ashwood said. He added that the logical next step is to look directly at specific cell populations that may be responsible for the diverging responses between patients and controls.



Publication: 4th International Meeting for Autism Research (IMFAR)
On the web: www.ucdmc.ucdavis.edu/mindinstitute 

Advertise in this space for $10 per month. Contact us today.


Related Autism News
Behavioural signs of autism become evident between the ages of 6 and 12 months
Autism clusters indentified in California
Increase in the number of children born in California with autism
Ordinary Words Hardly Recognised in Autism
Babies who don't respond to their names may be at risk for developmental disorders, including autism
Autism costs society an estimated $3M per patient
Infants with autistic siblings may display early social, communication problems
'The eyes have it' -- Autism research yields surprising results
New genetic clues to autism revealed
Autism linked to paternal age

Subscribe to Autism Newsletter

Enter your email address:


 Additional information about the news article
This study was supported by grants from the National Institutes of Environmental Health Sciences, the U.S. Environmental Protection Agency, the UC Davis M.I.N.D. Institute, Ted Lindsay Foundation and Visceral. The UC Davis M.I.N.D. (Medical Investigation of Neurodevelopmental Disorders) Institute is a unique collaborative center for research into the causes and treatments of autism, bringing together parents, scientists, clinicians and educators. For further information, go to http://www.ucdmc.ucdavis.edu/mindinstitute
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)