RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
  Anorexia Nervosa
  Anxiety
  Bulimia
  CFS
  Child Psychiatry
  Depression
  Forensic Psychiatry
  Learning-Disabilities
   Autism
  Mood Disorders
  Neuropsychiatry
  Peri-Natal Psychiatry
  Personality Disorders
  Psychology
  Psychoses
  Psychotherapy
  Sleep Disorders
  Substance Abuse
  Suicide
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Autism Channel

subscribe to Autism newsletter
Latest Research : Psychiatry : Learning-Disabilities : Autism

   EMAIL   |   PRINT
Protein Snapin as a potential drug target in Autism

Aug 25, 2005 - 6:40:00 AM
"This is significant not just in identifying snapin as a protein that shapes the dendrites, but also in pinpointing a drug target where one can regulate the interaction of snapin with cypin," Firestein explained.

 
[RxPG] Rutgers' Bonnie Firestein likens nerve cells to trees -- some are short and bushy with many branches while others are tall with a few branches coming out of one or two main trunks. Different branching patterns correlate with specific disorders and Firestein's quest is to discover how these dissimilar patterns come about and why.

A new paper by Firestein and her colleagues at Rutgers, The State University of New Jersey, examines the role of the protein snapin in nerve branch, or dendrite, patterning and its potential as a drug target in therapies aimed at learning and memory disorders. The article will appear in the journal Molecular Biology of the Cell but appeared online today at MBC in Press (www.molbiolcell.org/in_press.shtml).

While disorders like autism may arise from a multiplicity of causes, research at the cellular level, such as that of Firestein and her Rutgers team, is creating an important point of entry for early intervention with therapeutic drugs.

Dendrites are the input centers of neurons -- where nerve cells receive information that they pass on to another nerve cell or to the brain. When there is an abnormal decrease in dendrite branches, there are fewer sites to receive information and communication may be impeded. Individuals with disorders such as autism and Rett syndrome display not only fewer branches, but also show two quite different dendrite patterns. Firestein's most recent work explores the how and why of dendrite branching and patterning.

"It's not just how many branches there are, but where they are and the pattern they form," said Firestein, an assistant professor in Rutgers' department of cell biology and neuroscience. "The patterning actually affects the way a cell signals and understanding the patterning could be just as important as understanding how many branches are there. Ultimately, this could lead to new drugs designed to modulate the patterning activity."

Firestein has worked extensively with cypin, a protein that regulates dendrite numbers (a news release is posted online at ur.rutgers.edu/medrel/viewArticle.html?ArticleID=3708). Cypin works on tubulin, a protein that is a structural building block of the dendrite skeleton. Now Firestein's research group has turned its attention to the protein snapin. When snapin binds to cypin, tubulin is crowded out, so fewer dendrites assemble and more branching occurs.

When researchers overexpressed snapin in hippocampal neurons in the lab, the number of primary dendrites growing out of the cell body decreased, but many more secondary dendrites branched off them.

"This is significant not just in identifying snapin as a protein that shapes the dendrites, but also in pinpointing a drug target where one can regulate the interaction of snapin with cypin," Firestein explained.

Both of these proteins have many other functions in the nerve cell environment and elsewhere in the body. "We need to change cypin's function for branching but not its other functions," Firestein said. "Rather than a drug that blocks cypin, we need a drug that affects the binding between the cypin and snapin. This is easier to design and cypin can still function with the other proteins it binds to."

Firestein's goal is to build "a core pathway of dendric branching" – a sequence of steps, each affecting the next, with cypin at the center. "Our pathway says cypin does this; now what regulates cypin? Here snapin has a role. And what does snapin regulate?" said Firestein. "Our hope is in ten years, we will have a whole pathway mapped out so that we can target different points in the pathway with new drugs."



Publication: Journal Molecular Biology of the Cell
On the web: Rutgers, the State University of New Jersey 

Advertise in this space for $10 per month. Contact us today.


Related Autism News
Behavioural signs of autism become evident between the ages of 6 and 12 months
Autism clusters indentified in California
Increase in the number of children born in California with autism
Ordinary Words Hardly Recognised in Autism
Babies who don't respond to their names may be at risk for developmental disorders, including autism
Autism costs society an estimated $3M per patient
Infants with autistic siblings may display early social, communication problems
'The eyes have it' -- Autism research yields surprising results
New genetic clues to autism revealed
Autism linked to paternal age

Subscribe to Autism Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)