RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
  Anorexia Nervosa
  Anxiety
  Bulimia
  CFS
  Child Psychiatry
  Depression
  Forensic Psychiatry
  Learning-Disabilities
   Autism
  Mood Disorders
  Neuropsychiatry
  Peri-Natal Psychiatry
  Personality Disorders
  Psychology
  Psychoses
  Psychotherapy
  Sleep Disorders
  Substance Abuse
  Suicide
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Autism Channel

subscribe to Autism newsletter
Latest Research : Psychiatry : Learning-Disabilities : Autism

   EMAIL   |   PRINT
Fragile X syndrome is marked by autism-like symptoms

Mar 18, 2004 - 1:44:00 AM

 
[RxPG] People with fragile X syndrome, the most common inherited developmental disability, have reduced blood levels of a protein vital for brain development and function, researchers at the School of Medicine have found. These lowered levels are linked to abnormal activity patterns in the brain.

“It is exciting to think that a biological marker we can measure in the blood is correlated with vital brain function,” said Allan Reiss, MD, professor and director of the Stanford Psychiatry Neuroimaging Laboratory and Behavioral Neurogenetics Research Center in the Department of Psychiatry and Behavioral Sciences and the study's senior author.



These sets of images show brain regions where there was significant activation during the “response inhibition” tasks used to compare activity in fragile X brains (blue) with typically developing brains (red). Photo: Courtesy of Vinod Menon

Additionally, in people with fragile X syndrome, researchers found that background brain activity outside the realm of problem solving does not decrease as expected when the individual is confronted with a complex task. In unaffected people, the brain smoothly redirects resources to other tasks as needed. This may explain why people with fragile X can't produce cognitive resources when needed.

The findings, published March 1 in the Proceedings of the National Academy of Sciences, will enable a more targeted approach to the development of treatments for the disorder.

Fragile X syndrome is so named because it results from a mutation of a gene at a “fragile site” on the X chromosome where structural gaps may occur. It affects roughly 1 in 3,600 males and 1 in 4,000 to 6,000 females, according to the National Fragile X Foundation.

The mutation arises when a repetitive DNA segment of a gene known as FMR1 expands up to hundreds or thousands of times. The FMR1 gene normally produces fragile X mental retardation protein, which regulates the production of other proteins controlling how nerve synapses grow and change in response to learning.

Males with fragile X syndrome produce little or no fragile X protein. They also have severe manifestations of the disease, including autistic-like behaviors, hyperactivity and mental retardation. Affected females often have less extreme symptoms such as attention deficit, shyness, anxiety and learning problems, although some may show autistic behavior and mental retardation.

Such a broad spectrum of severity in females corresponds to a wide range of brain activation patterns and blood levels of fragile X protein. This range makes females particularly fitting subjects for studying the association between the protein levels and brain activity in individuals with fragile X syndrome.

“The effect of genetic factors on brain function is a topic of increasing interest within the field of cognitive neuroscience, and fragile X syndrome provides an excellent model to investigate the effect of a single gene on human brain function” said first author Vinod Menon, PhD, associate professor of psychiatry and behavioral sciences and a member of Stanford's neurosciences program.

Menon, Reiss and colleagues examined whether reductions in brain activation are correlated with levels of fragile X mental retardation protein in the blood. In previous studies the researchers had shown that individuals with performance deficits had reduced brain activity in regions known to be associated with the tasks being performed. They conducted the current study to shed light on whether the reduced brain activity observed was simply a function of poor performance or the result of faulty neural processing.

The study, funded by the National Institutes of Health with support from the Canel Family Fund, observed 18 females ages 10-22 who had the gene mutation that causes fragile X syndrome, and for comparison, 16 typically developing age-matched females. Study subjects performed a series of tasks while undergoing an MRI that allows researchers to monitor brain activity. The method tracks changes in blood oxygen levels as a marker for changes in blood flow that, in turn, are closely correlated to nerve cell activity in the brain.

The so-called response inhibition task researchers used was simple, addressing the ability to control impulsive behavior. Subjects were shown different letters of the alphabet that flashed one at a time on a computer screen. They were asked to respond by pressing a key in every case except when they saw the letter X. The first task was a “Go” task, in which the letter X never appeared and in this way subjects were allowed to build up a tendency to respond. Immediately afterward, subjects performed a “Go/No Go” task in which the letter X did appear in the lineup, at which point the subject had to control the previously built impulse to respond. Statistical correlations were made between observed reduction in brain activity compared with typically developing individuals and the levels of fragile X mental retardation protein found in blood samples taken from each subject.

Individuals with fragile X syndrome performed the response inhibition task as well as normally developing people, so the observed differences in brain activity could not be attributed simply to performance deficits. Among the participants with fragile X, brain activity decreased in key areas involved in response inhibition in proportion to fragile X protein levels. “We are particularly excited to have a marker for this condition that gives us a tool to begin to query associations across multiple scientific levels including genetic, brain function and behavior,” said Reiss. “The study brings neuroscience and psychiatry together in a unique way.”

The work is part of a comprehensive research program at Stanford directed by Reiss and devoted to studying fragile X syndrome and other genetic and neurodevelopmental disorders that affect learning, behavior and development in children. The research team plans to expand brain imaging research to test other cognitive and behavioral functions with the disorder, integrating knowledge gained from genetic, physiological and behavioral studies. They are recruiting preschoolers, children and adolescents for ongoing studies to determine, among other things, the timing, amount and type of effective interventions.

http://spnl.stanford.edu/publications/pdfs/Menon_FX_FMR1PNAS04.pdf

Individuals with fragile X syndrome or other causes of developmental disability are encouraged to participate in this study. Call (888) 411-2672 or e-mail [email protected] for more information.



Advertise in this space for $10 per month. Contact us today.


Related Autism News
Behavioural signs of autism become evident between the ages of 6 and 12 months
Autism clusters indentified in California
Increase in the number of children born in California with autism
Ordinary Words Hardly Recognised in Autism
Babies who don't respond to their names may be at risk for developmental disorders, including autism
Autism costs society an estimated $3M per patient
Infants with autistic siblings may display early social, communication problems
'The eyes have it' -- Autism research yields surprising results
New genetic clues to autism revealed
Autism linked to paternal age

Subscribe to Autism Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)