RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
  Bacteriology
   Salmonella
  Virology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Bacteriology Channel

subscribe to Bacteriology newsletter
Latest Research : Microbiology : Bacteriology

   EMAIL   |   PRINT
Clues to a Parasitic Nematode’s Bacterial Partnership

Mar 29, 2005 - 4:32:00 PM
This Wolbachia genome is small, only about a million base pairs, and many metabolically critical genes have degraded through mutation to the point of uselessness. This phenomenon, called reductive evolution, is typical of long-term symbioses, as the two partners increasingly complement one another’s biochemical activities, reducing the selection pressure on otherwise lethal mutations.

 
[RxPG] More than a billion people are at risk for infection with filarial nematodes, parasites that cause elephantiasis, African river blindness, and other debilitating diseases in more than 150 million people worldwide. The nematodes themselves play host to bacteria that live within their cells, but in this case, the relationship is classic mutualism, with each benefiting from the other. Indeed, the Wolbachia bacterium is so crucial to its host nematode that apparently eradicating it with antibiotics severely compromises the nematode’s ability to complete its life cycle within its human host. Thus, understanding the details of this symbiosis may help identify new strategies for controlling diseases caused by filarial nematodes. In a new study, Barton Slatko and colleagues present the complete DNA sequence of the Wolbachia pipientis strain within Brugia malayi, a parasitic nematode responsible for lymphatic filariasis, and analyze its genome for clues to the interdependence of the two species.

This Wolbachia genome is small, only about a million base pairs, and many metabolically critical genes have degraded through mutation to the point of uselessness. This phenomenon, called reductive evolution, is typical of long-term symbioses, as the two partners increasingly complement one another’s biochemical activities, reducing the selection pressure on otherwise lethal mutations. Wolbachia’s translational machinery and DNA repair equipment are largely intact. The bacterium appears to supply nucleotides to its host, as it contains complete pathways for biosynthesis of both purine and pyrimidine nucleotides. This is in contrast to Rickettsia, a close relative of Wolbachia and a mammalian parasite. Slatko and colleagues enumerate a variety of other pathways that have either been degraded or preserved, and highlight patterns in the genome structure through comparisons with both Rickettsia and another Wolbachia strain, found in fruit flies. For example, the two Wolbachia strains appear to have different membrane structures, possibly reflecting their different lifestyles (mutualistic versus parasitic).

Wolbachia can manufacture riboflavin and FAD, which are essential metabolic coenzymes and which do not appear to be made by its host. Conversely, it cannot synthesize amino acids and a variety of other vitamins and cofactors, and probably depends on the nematode to supply them. One discovery of possible significance is the presence in the bacterium of the synthetic pathway for heme—the oxygen-carrying iron component of hemoglobin. The nematode may require heme for synthesis of developmental hormones, so Wolbachia’s heme pathway may be an inviting target for therapy against nematode infection. Since no new antifilarial has been developed in two decades, these results may quickly lead to new therapeutic strategies against these parasites.



Publication: (2005) And Littler Genomes inside ’Em: Clues to a Parasitic Nematode’s Bacterial Partnership. PLoS Biol 3(4): e148.
On the web: Print PDF (41K) 

Advertise in this space for $10 per month. Contact us today.


Related Bacteriology News
Predatory bacteria attack in 'military-style' waves
The Strange Case of the Radiation-Resistant Bacteria
Evolution of typhoid bacteria
New Treatment Using Human Antibodies to Target Harmful Toxins May Protect Against C. Difficile
Guinea Pig Aerosol Challenge Presents New Model for Q Fever Research in Humans
Gut Bacteria Cospeciating with Plataspid stinkbug
An infectious agent of deception, exposed through proteomics
Gram positive bacterial membrane mystery solved
Salmonella bacteria use RNA to assess and adjust magnesium levels
How deadly toxin botulinum neurotoxin A hijacks cells

Subscribe to Bacteriology Newsletter

Enter your email address:


 Additional information about the news article
DOI: 10.1371/journal.pbio.0030148

Published: March 29, 2005

Copyright: © 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)