RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
  Bacteriology
   Salmonella
  Virology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Bacteriology Channel

subscribe to Bacteriology newsletter
Latest Research : Microbiology : Bacteriology

   EMAIL   |   PRINT
Three New Phases of Repairing DNA Damage in E. coli

Jun 22, 2005 - 1:05:00 PM
Edward Cox’s group at Princeton University examined this question by looking for evidence that temperate phage infection triggers changes in bacterial behavior. Working with λ phages, the authors studied how phage infection affects the regulation of genes that might impact the bacterium’s survival by comparing the constellation of genes expressed in uninfected E. coli bacteria to those in E. coli carrying a dormant λ phage.

 
[RxPG] Any cell that receives a dose of radiation is placed in a dangerous situation. The DNA damage resulting from exposure to such radiation (or any other mutagen) can cause massive rearrangements to genetic information and potentially kill the cell. Bacteria have learned to cope with this threat by activating genes that repair DNA damage and by preventing a cell from dividing before these repairs are completed. In the bacteria Escherichia coli, these repair genes form what is known as the SOS response.

The E. coli SOS response has been used to study DNA repair for decades, and a great deal is known about how the more than 30 genes involved in the response function. Two proteins figure prominently in this response. The LexA protein acts as a repressor and inhibits the expression of SOS genes under normal conditions; in the event of DNA damage, the protein RecA inactivates the LexA repressor by enhancing its autocleavage into two fragments, which initiates the SOS response. While these initial stages are well understood, how all the SOS genes are coordinated, and ultimately turned off, is only beginning to be explored.

In a new study, Joel Stavans, Uri Alon, and colleagues have closely followed the SOS response in individual E. coli cells to investigate its dynamics. Previous studies, which monitored the temporal pattern of activation of entire populations of cells, found that SOS genes turned on in one peak upon DNA damage. But Friedman et al. found that SOS genes in individual bacteria respond to DNA damage in three precisely timed phases. This observation reveals the importance of examining complex processes at the level of single cells, while furthering our understanding of how the SOS response is structured in E. coli.

Friedman et al. monitored the SOS response by attaching a green fluorescent protein (GFP) to the promoters (the section of DNA responsible for activating a gene) of three SOS genes (lexA, recA, and umuDC). Bacteria expressing these promoter-GFP fusions became fluorescent within minutes of being exposed to UV radiation, visualized using time-lapse fluorescence microscopy. Since GFP fluorescence is directly correlated with the expression of each of the chosen genes (i.e., their promoter activity), the authors could gauge the SOS response rate upon DNA damage.

To induce the SOS response, the authors exposed E. coli cells to UV radiation. By monitoring individual cells at two-minute intervals after this dose, Friedman et al. found up to three peaks of promoter activity at roughly 30, 60, and 100 minutes. Although the amount of this activity and the average number of peaks varied between cells, the timing was always similar in different cells, suggesting a highly structured, timed response. When the authors averaged this response over the population, it “washed out” into a single peak—which explains why the three peaks of expression were not previously detected.

A deeper look into the dynamics of the SOS response in single E. coli cells showed that it did not correlate with cell size, suggesting the SOS response is not synchronized with the cell cycle. In addition, Friedman et al. repeated their experiments in a bacterial strain lacking the SOS response gene umuDC. The peak pattern was altered in this mutant strain, and the precision in the appearance of the peaks was reduced. By re-examining the SOS response in single cells, Friedman et al. have visualized an accurately timed and synchronized DNA repair process. Modulations in response to DNA damage have also been observed recently in individual mammalian cells. Future experiments in E. coli—one of the most genetically tractable model systems—should help explain how this timed response is related to the different pathways of DNA repair and shutoff of the response.



Publication: (2005) Three New Phases of Repairing DNA Damage in E. coli . PLoS Biol 3(7): e239
On the web: Print full text journal article PDF (30K) 

Advertise in this space for $10 per month. Contact us today.


Related Bacteriology News
Predatory bacteria attack in 'military-style' waves
The Strange Case of the Radiation-Resistant Bacteria
Evolution of typhoid bacteria
New Treatment Using Human Antibodies to Target Harmful Toxins May Protect Against C. Difficile
Guinea Pig Aerosol Challenge Presents New Model for Q Fever Research in Humans
Gut Bacteria Cospeciating with Plataspid stinkbug
An infectious agent of deception, exposed through proteomics
Gram positive bacterial membrane mystery solved
Salmonella bacteria use RNA to assess and adjust magnesium levels
How deadly toxin botulinum neurotoxin A hijacks cells

Subscribe to Bacteriology Newsletter

Enter your email address:


 Additional information about the news article
DOI: 10.1371/journal.pbio.0030239

Published: June 21, 2005

© 2005 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)