RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
   Multiple Myeloma
   Non-Hodgkin's Lymphoma
  Bone Cancer
  Brain
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Blood Channel

subscribe to Blood newsletter
Latest Research : Cancer : Blood

   EMAIL   |   PRINT
Bcr-Abl mutation and the loss of Arf genes triggers an aggressive form of ALL

Apr 20, 2006 - 4:46:00 PM , Reviewed by: Priya Saxena
The study's findings suggest why imatinib may fail to cause remission of ALL in patients with the Bcr-Abl mutation and point to a strategy for overcoming this resistance.

 
[RxPG] Investigators at St. Jude Children's Research Hospital have used mouse models to determine why some forms of acute lymphoblastic leukemia (ALL) are extremely aggressive and resist a drug that is effective in treating a different type of leukemia.

The investigators found that the combination of a mutation called Bcr-Abl and the loss of both copies of the tumor suppressor gene Arf in bone marrow cells triggers an aggressive form of ALL. Inactivation of both Arf genes facilitated the multiplication of leukemic cells that did not respond to the drug imatinib (Gleevec®). Imatinib is already successfully used to treat chronic myelogenous leukemia (CML), another blood cell cancer caused by the Bcr-Abl mutation.

The St. Jude study provided evidence that imatinib resistance in mouse models of ALL did not depend strictly on the presence of Bcr-Abl and the loss of Arf genes in the cancer cells themselves. Rather, drug resistance reflected an interaction of the tumor cells with specific growth-promoting factors produced in the mice. After removal of leukemic cells from mice that had failed imatinib therapy, compounds inhibiting enzymes called JAK kinases restored the cells' imatinib sensitivity.

The study's findings suggest why imatinib may fail to cause remission of ALL in patients with the Bcr-Abl mutation and point to a strategy for overcoming this resistance.

The Bcr-Abl oncogene (a cancer-causing gene) is formed when parts of two chromosomes switch places, leading to fusion of a fragment of the Bcr gene from one chromosome to a portion of the Abl gene from the other. Bcr-Abl encodes a type of enzyme called a tyrosine kinase, which then drives the abnormal, uncontrolled multiplication of leukemic cells.

Other researchers had previously shown that inhibiting the Bcr-Abl kinase with imatinib causes durable remissions of cancer with minimal side effects in patients with CML--a finding that has revolutionized the treatment of this form of leukemia. However, imatinib has proven far less effective in treating ALL patients with the Bcr-Abl mutation, and the basis of drug resistance in this disease is unknown.

The Arf gene normally suppresses the proliferation of cells carrying cancer-causing mutations such as Bcr-Abl, according to Charles J. Sherr, M.D., Ph.D., a Howard Hughes Medical Institute investigator and co-chair of the St. Jude Department of Genetics and Tumor Cell Biology. Arf acts as a safeguard against the cancer-causing effects of Bcr-Abl, Sherr said. Sherr is senior author of the paper. The Arf gene was discovered at St. Jude in 1995 in the laboratory of Sherr and Martine F. Roussel, Ph.D., a member of the Department of Genetics and Tumor Cell Biology. Roussel is also an author of the current paper.

The St. Jude team found that Arf is not inactivated in CML patients who respond to imatinib. This is in contrast to ALL, in which Arf loss frequently occurs and imatinib treatment is far less effective. "This suggested to us that inactivation of Arf in ALL cells expressing the Bcr-Abl enzyme gives these cells a strong proliferative (cell multiplication) advantage," Sherr said. "And this advantage might contribute to imatinib resistance in some way."

To investigate this hypothesis, the researchers used a virus-like piece of DNA to carry the Bcr-Abl oncogene into bone marrow-derived lymphocytes obtained from mice that either retained Arf or were previously engineered to lack this gene. These pre-B lymphocytes represent one type of white blood cell that can become cancerous and cause ALL.

The researchers then transplanted these "transformed" cells carrying Bcr-Abl back into normal mice. Animals that received transformed pre-B cells that had both copies of the Arf gene intact were highly resistant to disease development. However, mice injected with cells that carried Bcr-Abl and lacked Arf rapidly developed an aggressive form of ALL that could not be cured with high doses of imatinib.

"Intriguingly, tumor cells removed from these resistant mice and treated with imatinib in cell cultures were still very sensitive to this drug," noted Richard T. Williams, M.D., Ph.D., a fellow in Sherr's laboratory and the paper's lead author. "This suggested to us that the failure of imatinib to cure the mice depended on some substance in the animal that stimulated tumor cell replication or survival."

Sherr's team guessed that one such factor might be the B lymphocyte stimulating protein IL-7. Normally produced in the bone marrow, IL-7 further enhanced the proliferation of cultured leukemic cells removed from the mice and made the cells resistant to imatinib's growth inhibitory effects.

IL-7 binds to receptors on the surface of lymphocytes, which triggers the activity of the JAK kinases. The activated JAK kinases then stimulate cell growth through a signaling pathway that operates alongside the one controlled by the Bcr-Abl kinase, Sherr said. Therefore, the St. Jude investigators used a chemical inhibitor of JAK kinases to block the effect of IL-7 on leukemic cells in culture. This treatment restored the ALL cells' sensitivity to imatinib.

"Our study of mice with ALL containing both Bcr-Abl and Arf mutations has provided unexpected insights into how factors in the mice--and potentially in humans--might contribute to imatinib resistance," Williams said. "Although our efforts to block IL-7 were limited to cell cultures, our mouse model provides an inexpensive and efficient way to test newly developed JAK kinase inhibitors and other drugs."



Publication: A report on this work appears in the April 17 issue of Proceedings of the National Academy of Sciences.
On the web: www.stjude.org 

Advertise in this space for $10 per month. Contact us today.


Related Blood News


Subscribe to Blood Newsletter

Enter your email address:


 Additional information about the news article
This work was supported in part by the Howard Hughes Medical Institute, a National Institutes of Health Cancer Center Core Grant and ALSAC.

St. Jude Children's Research Hospital
St. Jude Children's Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tenn., St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fund-raising organization. For more information, please visit www.stjude.org.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)