RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
   Multiple Myeloma
   Non-Hodgkin's Lymphoma
  Bone Cancer
  Brain
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
BLOOD Blood Channel

subscribe to Blood newsletter
Latest Research : Cancer : Blood

   EMAIL   |   PRINT
Screening for p53 would predict sensitivity to proteasome inhibitors

Mar 10, 2007 - 11:40:03 AM , Reviewed by: Dr. Rashmi Yadav
“If confirmed experimentally, our hypothesis will serve to pre-select patients with the best chances of success – those with p53 – and spare the rest – those without p53 – the severe side effects of bortezomib therapy."

Key Points of this article
Researchers at the University of Pennsylvania Schools of Medicine and Veterinary Medicine propose to test for p53, a well-known tumor-suppressor protein, in cancer patients to determine if they are suitable candidates for proteasome inhibitors, a promising class of anti-cancer drugs.
The researchers speculate that responsive myelomas are the ones retaining the p53 protein, which gets stabilized during treatment and triggers self-destruction of cancerous cells.
 
[RxPG]
Screening for p53 would predict sensitivity to proteasome inhibitors
Green staining depicts tumor cells dying after treatment with proteasome inhibitors. Here, the tumor lacks p53, and only a fraction of the cells are killed.
Researchers at the University of Pennsylvania Schools of Medicine and Veterinary Medicine have determined a way to pre-screen cancer patients to see if they are suitable candidates for proteasome inhibitors, a promising class of anti-cancer drugs. They propose to test for p53, a well-known tumor-suppressor protein that is broken down by cellular machinery called proteasomes. This study appears online in the journal Blood, in advance of print publication in June 2007.

In cancer patients whose tumors do not produce p53, proteasome inhibitors might be ineffective. This patient group could be spared unnecessary treatment with possible harmful side effects. On the other hand, proteasome inhibitors are highly effective against lymphomas that do have the ability to produce p53.

“Proteasomes resemble paper shredders – they break down proteins such as p53 into smaller pieces,” says senior author Andrei Thomas-Tikhonenko, PhD, Associate Professor of Pathology. “A proteosome inhibitor effectively jams the shredder so that p53 is not immediately broken down.”

In this study, the research team used a mutant strain of mice in which p53 activity can be switched on and off. “In principle, tumors in these mice could be obliterated by turning p53 back on,” says Thomas-Tikhonenko. “The problem was that a protein called MDM2 sent p53 into the teeth of the proteasome shredder.” The proteasome inhibitor bortezomib (Velcade®) causes this jamming process and restores p53 function. However, if p53 was inactivated in the mice, bortezomib treatment failed to kill tumors. Similar effects were seen with cell lines derived from human Burkitt’s lymphomas. When implanted into mice, these lymphoma cells were highly sensitive to the proteasome inhibitor, but as soon as p53 was removed, the inhibitor had no effect.

“These findings have important implications for clinical practice,” Thomas-Tikhonenko adds. “Bortezomib is approved by the Food and Drug Administration for the treatment of multiple myeloma, another cancer of lymphoid cells. Yet, only a fraction of multiple myeloma patients respond to the drug.”

The researchers speculate that responsive myelomas are the ones retaining the p53 protein, which gets stabilized during treatment and triggers self-destruction of cancerous cells. “If confirmed experimentally, our hypothesis will serve to pre-select patients with the best chances of success – those with p53 – and spare the rest – those without p53 – the severe side effects of bortezomib therapy,” explains Thomas-Tikhonenko.

There are two ways, suggest the researchers, to test for p53 production in cancer patients. First, if MDM2 is expressed at abnormally high levels, it is a good indicator that p53 is constantly being made. Second, genetic tests can also be conducted to see if the malignant cells still have the gene for p53 or if the portion of the chromosome on which p53 is found has been deleted.

In addition to Thomas-Tikhonenko, Duonan Yu and Martin Carroll, both from Penn, were co-authors. The National Institutes of Health and the Commonwealth of Pennsylvania Health Research Formula Fund provided funding for this research.



Publication: BLOOD
On the web: http://www.med.upenn.edu/ 

Advertise in this space for $10 per month. Contact us today.


Related Blood News


Subscribe to Blood Newsletter

Enter your email address:


 About Dr. Rashmi Yadav
This news story has been reviewed by Dr. Rashmi Yadav before its publication on RxPG News website. Dr. Rashmi Yadav, MBBS, is a senior editor for RxPG News. In her position she is responsible for managing special correspondents and the surgery section of the website. Her areas of special interest include cardiothoracic surgery and interventional radiology.
RxPG News is committed to promotion and implementation of Evidence Based Medical Journalism in all channels of mass media including internet.
 Additional information about the news article
PENN Medicine is a $2.9 billion enterprise dedicated to the related missions of medical education, biomedical research, and high-quality patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is ranked #2 in the nation for receipt of NIH research funds; and ranked #3 in the nation in U.S. News & World Report's most recent ranking of top research-oriented medical schools. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System includes three hospitals, all of which have received numerous national patient-care honors [Hospital of the University of Pennsylvania; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center]; a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home care and hospice.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)