RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
   Multiple Myeloma
   Non-Hodgkin's Lymphoma
  Bone Cancer
  Brain
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Proceedings of the National Academy of Sciences Blood Channel

subscribe to Blood newsletter
Latest Research : Cancer : Blood

   EMAIL   |   PRINT
miRNAs abnormal signalling may lead to platelet-related leukemias

Mar 16, 2006 - 10:01:00 PM , Reviewed by: Priya Saxena
“Basically, we found that a specific set of miRNA genes are turned off in normal platelet development, but turned on in certain platelet-related leukemia cells."

 
[RxPG] Scientists have identified a handful of microRNAs (miRNAs) that appear to play a significant role in the development of platelets – blood cells critical to the body’s ability to form clots following an injury. They also say some of these same miRNAs, when acting abnormally, may contribute to certain forms of leukemia.

“Basically, we found that a specific set of miRNA genes are turned off in normal platelet development, but turned on in certain platelet-related leukemia cells,” says lead author Dr. Ramiro Garzon, a clinical instructor in The Ohio State University College of Medicine.

The study is published online in the Proceedings of the National Academy of Sciences.

MiRNA has only recently been acknowledged as an important force in biology. For decades, scientific dogma has held that messenger RNA (mRNA) was responsible for carrying out DNA instructions, or code, for protein production in the cell. Little was known, however, about how cells actually regulated that process. But over the past 10 years, researchers have discovered that miRNA – tiny fragments of RNA typically no more than 20-25 nucleotides in length – also regulates protein synthesis by interfering with mRNA’s original instructions. They now know that miRNA helps to regulate many key biological processes, including cell growth, death, development and differentiation.

Dr. Carlo Croce, director of Ohio State’s Human Cancer Genetics Program, was the first to discover a link between miRNA and cancer. In the current study, Croce, who is also a member of the OSU Comprehensive Cancer Center, along with Garzon and colleagues from the M.D. Anderson Cancer Center, examined miRNA activity in the earliest phases of platelet development.

The researchers had previously uncovered substantial evidence linking certain patterns of miRNA to both normal and abnormal blood cell development, especially in diseases like chronic lymphocytic leukemia and lymphoma. Relatively little was known, however, about miRNA functionality in platelet formation.

Platelets are created from stem cells in the bone marrow. They evolve through a process called megakaryocytopoiesis, which generates megakaryocytes, or platelet parent cells.

The research team used microRNA gene chip analysis to identify miRNA expression in normal stem cells and megakaryoctyes. They also studied miRNA expression patterns in four acute megakaryoblastic leukemia (AMKL) cell lines. They discovered that a set of 17 miRNAs are turned off during normal megakaryocyte differentiation and that 8 of those genes create a molecular signature that clearly defines a megakaryocyte from any other type of cell.

“We believe this set of genes may contribute to platelet formation,” says Garzon. “We think that when these miRNAs are turned off, it’s a signal to other gene targets to get busy with the normal process of development.” Garzon says just the opposite happens in AMKL, an unusual form of leukemia more often found in children than adults.

In examining four sets of AMKL lines, they found that 10 miRNAs were turned on, again representing a molecular signature for that disease. “Interestingly, half of that number are also members of the miRNA profile in normal platelet cell development – suggesting that this small subset may be most important in understanding how AMKL develops, says Garzon.

Researchers believe that more knowledge about miRNA could lead to a new class of targeted therapies that may be helpful in treating leukemia and other diseases. “That day, however, is still a long way off,” says Garzon.




Publication: Proceedings of the National Academy of Sciences
On the web: http://medicalcenter.osu.edu 

Advertise in this space for $10 per month. Contact us today.


Related Blood News


Subscribe to Blood Newsletter

Enter your email address:


 Additional information about the news article
Grants from the National Cancer Institute, the Leukemia & Lymphoma Society, the Kimmel Foundation and a CLL Research Foundation Grant helped support the study.

Additional co-authors from OSU’s department of molecular virology, immunology and medical genetics include Flavia Pichiorri, Tizaiana Palumbo, Rodolfo Iuliano, Amelia Cimmino, Rami Aqeilan, Stefano Volinia, Darshna Bhatt, Hansjuerg Alder, Guido Marcucci, George Calin, Chang-Gong Liu and Clara Bloomfield. Michael Andreeff, who also helped with the study, is from the M.D. Anderson Cancer Center.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)