RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
  Bone Cancer
  Brain
   Glioblastoma Multiforme
   Medulloblastoma
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Neuron Brain Channel

subscribe to Brain newsletter
Latest Research : Cancer : Brain

   EMAIL   |   PRINT
'Gateway' gene discovered for brain cancer

Feb 14, 2007 - 10:36:24 AM , Reviewed by: Dr. Priya Saxena

 
[RxPG] Researchers have discovered that the same genetic regulator that triggers growth of stem cells during brain development also plays a central role in the development of the lethal brain cancer malignant glioma. In experiments on mice with such gliomas, they showed that knocking out the function of a particular regulatory protein, Olig2, almost completely eliminated tumor formation.

The researchers said their findings suggest that targeting Olig2 could offer a potential avenue for treatment that would kill tumor cells without affecting normal tissue.

Dana-Farber Cancer Institute investigators Charles Stiles and David Rowitch and their colleagues reported their findings in the February 15, 2007 issue of the journal Neuron, published by Cell Press.

Olig2 is a "transcription factor"—a protein that regulates the activity of genes. Prior studies had indicated that it plays a central role in enabling neural stem cells to replicate during embryonic brain development. Also, studies have suggested that brain tumors might arise from aberrant neural stem cells or the neural progenitor cells to which they give rise.

Analyzing tissue from human gliomas, Stiles, Rowitch, and their colleagues discovered that Olig2 is activated in the stem and progenitor cells found in the tumors. In a mouse model of malignant glioma, they found that knocking out Olig2 function prevented tumor formation in 91 percent of the animals.

Their analysis of the role of Olig2 in both tumor cells and normal neural stem cells revealed that it plays a key role in enabling cell growth. Specifically, they found that Olig2 represses the gene for a cell-replication "brake" called p21, which normally inhibits cell growth. Thus, they concluded that Olig2 is a "unifying feature of normal cell cells and malignant glioma" and a "gateway" gene for brain tumor development.

"Lineage-restricted pathways that regulate brain tumor behavior may represent more specific therapeutic targets with little potential to affect off-target cell types," commented the researchers.

"Brain tumors remain a major cause of cancer-related death despite advances in surgery, imaging, and conventional treatment modalities," they wrote. "This emphasizes the need to develop novel medical strategies based on a comprehensive understanding of the biological mechanisms underlying gliomagenesis."

They wrote that "our findings identify this core transcriptional regulator as an important candidate for antitumor therapeutics." While transcription factors are not generally considered useful targets for anti-cancer drugs, there are multiple ways that Olig2 could be inhibited, as well as ways to target other components of the regulatory pathway by which it exerts its influence on tumor growth, wrote the researchers.



DOI of the scientific paper: DOI 10.1016/j.neuron.2007.01.009 
Publication: Neuron
On the web: http://www.cellpress.com/ 

Advertise in this space for $10 per month. Contact us today.


Related Brain News
Signaling pathway discovered which may help find treatment for glioblastoma multiforme
Electronic nose potent new weapon against brain cancer
Neuroblastoma treatment- adding tumor-specific receptor to cytotoxic T cells with EBV receptor
Significant vaccine-enhanced immune response in malignant brain tumour
Simultaneous implantation of radioactive seeds and chemotherapy wafers promising in glioblastoma multiforme treatment
KetoCal diet: A non-invasive way to deal with malignant brain cancers
Bevacizumab holds promise for gliomas
'Gateway' gene discovered for brain cancer
Regulatory Approval for New Cotara(R) Brain Cancer Clinical Trial
Lead exposure linked with brain cancer

Subscribe to Brain Newsletter

Enter your email address:


 Additional information about the news article
The researchers include Keith L. Ligon of Dana-Farber Cancer Institute, Harvard Medical School, and Brigham and Women's Hospital in Boston, MA; Emmanuelle Huillard of Dana-Farber Cancer Institute and Harvard Medical School in Boston, MA and University of California, San Francisco in San Francisco, CA; Shwetal Mehta, Santosh Kesari, John A. Alberta, Robert M. Bachoo, Michael Kane, Charles D. Stiles, and Ronald A. DePinho of Dana-Farber Cancer Institute and Harvard Medical School in Boston, MA; Hongye Liu of Children's Hospital Boston in Boston, MA; David N. Louis of Massachusetts General Hospital of Boston, MA; David J. Anderson of Howard Hughes Medical Institute and California Institute of Technology in Pasadena, CA; David H. Rowitch of Dana-Farber Cancer Institute, Harvard Medical School, and Children's Hospital in Boston, MA and University of California, San Francisco in San Francisco, CA.

This work was supported by grants from the NIH to K.L.L. (K08NS047213), R.A.D. (P01 CA95616), C.D.S. (PO1NS047572), and D.H.R. (R01NS40511) and by a grant from the Goldhirsh Foundation, Boston, MA, to C.D.S.

Ligon et al.: "Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Glioma." Neuron 53, 503–517, February 15, 2007. DOI 10.1016/j.neuron.2007.01.009. www.neuron.org.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)