RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
  Brain Diseases
   Epilepsy
  Demyelinating Diseases
  Headache
  Memory
  Neurochemistry
  Neurodegenerative Diseases
  Regeneration
  Spinal Cord Diseases
  Stroke
  Taste
  Trigeminal Neuralgia
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Brain Diseases Channel

subscribe to Brain Diseases newsletter
Latest Research : Neurosciences : Brain Diseases

   EMAIL   |   PRINT
How thinking can harm brain cells

Nov 3, 2005 - 9:59:00 PM
"Stressing the cells with small amounts could trigger protective genes and induce adaptations that will make the dendrites more able to withstand insults," Bellizzi said.

 
[RxPG] Scientists at the University of Rochester Medical Center have targeted a new culprit and method of attack on neurologic functions in diseases such as Alzheimer's and dementia associated with HIV.

In an article in the Nov. 1 issue of The Journal of Clinical Investigation, the Rochester scientists describe a new mechanism by which brain cells can be damaged during chronic neurodegenerative diseases. When inflammation occurs in the brain, nerve impulses that are passed between cells during routine activities like learning and memory can become toxic. Instead of triggering the formation of memories, these impulses can inflict injury on neurons and disrupt neurologic function.

Understanding this mechanism could provide a new path for drugs to treat the diseases. Working in collaboration with researchers at the University of California at San Diego, the Rochester scientists propose a strategy of chemical preconditioning to induce adaptations in nerve cells that would enable the cells to better withstand toxic attacks, prevent injury, and preserve function.

"Preconditioning would allow the nervous system to experience stress and become more resistant to future encounters with stress and the damage it can trigger," said Harris A. Gelbard, M.D., professor of Neurology at the University of Rochester Medical Center and the research project's principal investigator.

A long-standing villain in neurodegenerative disease has been glutamate, an amino acid that normally acts as a neurotransmitter. Excess glutamate, however, can overly excite neurons, causing damage and death – a process called excitotoxicity. Some drugs developed for the treatment of Alzheimer's disease, for example, are designed to lower the production of glutamate or block its transmission to reduce excitotoxic injury.

"But just blocking glutamate doesn't seem to work efficiently in neurodegenerative diseases with inflammation," said Gelbard. "We reconsidered how excitotoxicity actually damages the nervous system in a functional way."

The scientists focused on dendrites, the crooked branches of neurons that carry impulses toward the body of the nerve cell, and synapses, the places where impulses pass from neuron to neuron. Injury to dendrites – characterized by swelling or beading, loss of dendrite spines, and reduction in size – is seen in HIV-1-associated dementia and Alzheimer's.

In laboratory studies, brain cells and slices were exposed to platelet-activating factor, or PAF, a compound that promotes inflammation and plays many roles in the brain. It can be produced by neurons and takes part in the working of synapses, including activity associated with learning and remembering. It also is produced by immune cells during inflammation. The amount of PAF in the brain increases dramatically in HIV-1-associated dementia and other neurodegenerative diseases.

"We found that disease makes dendrites more vulnerable to excitotoxicity," said Matthew J. Bellizzi, a researcher and student in the M.D./Ph.D. program at the Medical Center and corresponding author of the journal article. "We also found that damage to the dendrites may not require abnormal glutamate exposure."

The lab studies showed that elevated levels of PAF promoted beading on dendrites and injury to synapses following bursts of synaptic activity similar to those thought to be involved in learning and memory.

"This mechanism does not just apply to HIV," Gelbard said. "It applies to Alzheimer's, multiple sclerosis, Parkinson's and any neurodegenerative diseases that have synaptic dysfunction with inflammation, which is virtually all of them."

In lab studies, brain cells were treated with diazoxide, a drug investigated for use in ischemic heart disease and strokes. Pretreatment before exposure to PAF prevented dendritic beading and preserved synaptic functions, the studies showed.

"Stressing the cells with small amounts could trigger protective genes and induce adaptations that will make the dendrites more able to withstand insults," Bellizzi said.

Diazoxide is not the only drug that would work, and others might be better, the researchers said. Memantine, a drug that blocks glutamate receptors, is used in the treatment of Alzheimer's. Chemical preconditioning could represent an alternate or complementary strategy.

"Preconditioning to protect the synapse is likely to be more important in the early and middle phases of neurodegenerative diseases than simply preserving the cell body," Gelbard said.




Publication: Nov. 1 issue of The Journal of Clinical Investigation
On the web: www.urmc.rochester.edu 

Advertise in this space for $10 per month. Contact us today.


Related Brain Diseases News
Deep brain stimulation is effective at improving motor symptoms patients with advanced Parkinson's disease
High frequency oscillation analysis on EEGs offers a new surgical approach to improve seizure control
Zileuton may help in treatment of Alzheimer's disease
Anti-epileptic drugs increase risk of fractures in patients above the age of fifty years
More research and attention needed for epilepsy
Recent - onset seizures affect white matter development
Ethosuximide - most effective treatment for childhood absence epilepsy
Studies focusing on early diagnosis and treatment of epilepsy with minimal side-effects
Sudden Unexpected Death In Epilepsy
Topiramate may increase the risk of birth defects

Subscribe to Brain Diseases Newsletter

Enter your email address:


 Additional information about the news article
The research was supported by grants from the National Institutes of Health.

In addition to Gelbard and Bellizzi, the research team included Shao-Ming Lu, Ph.D., research assistant professor of Neurology at the Medical Center, and Eliezer Masliah, M.D., professor of Neuroscience and Pathology at the University of California at San Diego.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)