RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
  Bone Cancer
  Brain
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
   Pharmacotherapy
   Radiotherapy
   Vaccination
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Therapy Channel

subscribe to Therapy newsletter
Latest Research : Cancer : Therapy

   EMAIL   |   PRINT
Cancer defense by manipulating energy regulation of cells

Aug 20, 2005 - 4:35:00 PM
"If we can stifle a cancer cell's ability to adapt to an energy deficit, it might lose its growth advantage."

 
[RxPG] In an ongoing effort to fight disease by manipulating energy regulation of cells, a collaborative study led by Dartmouth Medical School (DMS) has demonstrated that cells lacking a tumor-suppressing kinase called LKB1 can still maintain healthy energy levels when they become stressed. This energy regulation is essential for keeping cells from dying off too quickly. The study's results could signal new advances for combating cancerous tumor growth, but also type 2 diabetes and obesity.

The study, published in the August 12 issue of the Journal of Biological Chemistry (JBC), was headed by Dr. Lee Witters, Eugene W. Leonard 1921 Professor of Medicine and Biochemistry at DMS and of Biological Sciences at Dartmouth College, who has researched kinases for over 25 years. Kinases encompass a large family of enzyme proteins that play key roles in the workings of most animal cells. He has focused much of his research on the AMP-activated kinase (AMPK) which responsible for managing energy within cellular pathways.

"A cell's energy level is critical to its survival," explains Witters, who likens a low-energy cell to a car with no gas in its tank. "In a previous study, we found that the cellular "gas gauge," AMPK, can turn around and alter any deficits in the cell if it is turned on by the kinase LKB1. In this JBC study, we wanted to see if AMPK could also be turned on by something besides LKB1."

"We decided to work with cervical and lung cancer cells because LKB1 is absent from the cellular pathway," said Rebecca Hurley, lead author of the study and a graduate student in the Molecular and Cellular Biology Program at Dartmouth. Working closely with scientists at St. Vincent's Institute in Australia and Duke University, the DMS team concluded that two kinases in these cancer cells, CaMKKα and CaMKKβ, are able to regulate AMPK independent of LBK1.

"With the addition of these two kinases, we think we have all nearly the players responsible for energy regulation within the cell, which should offer new opportunities in cancer treatment," said Hurley. "If we can stifle a cancer cell's ability to adapt to an energy deficit, it might lose its growth advantage." "You need to know how all these proteins interact before you can make truly significant advances," echoes Witters "It's like poker; not only do you need to know what each card signifies individually, but you must have an understanding of how they play off each other in order to win."

In addition to cancer-fighting potential of AMPK regulation, the enzyme also responds to changes in insulin or glucose and mediates impaired energy metabolism, a hallmark of type 2 diabetes. "This indicates that AMPK is a very tempting target for the treatment of some forms of diabetes and even obesity," said Witters.



Publication: August 12 issue of the Journal of Biological Chemistry (JBC)
On the web: Dartmouth Medical School 

Advertise in this space for $10 per month. Contact us today.


Related Therapy News
Taccalonolides from bat plants selectively kill cancer cells
Photodynamic therapy can help preserve the voice for patients with early stage laryngeal cancer
Bionic Nose to Detect Cancers
Anti- cancer gene discovered- new strategy for treatment?
Anthracycline induced heart damage can be reduced by prolonging infusion time
Genomic signatures to guide the use of chemotherapeutics
CDK2/FOXO1 as drug target to Prevent Tumors
Telomerase inhibitors may revolutionize cancer therapy
First ever shots of the cervical cancer vaccine administered in Queensland
Gleevec can be toxic to the heart

Subscribe to Therapy Newsletter

Enter your email address:


 Additional information about the news article
As Witters' laboratory continues to zero in on the central role of kinases in the treatment of disease, he acknowledges that this research is becoming more complex and multiple approaches are needed to find solutions. Witters believes that significant breakthroughs in science can only be achieved through open collaboration, citing partnerships between faculty and students, and between other institutes outside the Dartmouth community.

Often referring to his laboratory as a classroom, Witters pointed out the integral roles played by Hurley and Dartmouth College undergraduate student Jeanne Franzone '05, a co-author of the study. "Students are the grand integrators of collaboration," he said, noting that Hurley traveled to other labs in the US to complete this study. Other co-authors of the study are Kristin Anderson and Anthony Means from Duke University and Bruce Kemp from The St. Vincent's Institute and CSIRO Health Sciences and Nutrition in Australia.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)