XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
  Breast
  Skin
  Blood
  Prostate
  Liver
  Colon
  Thyroid
  Endometrial
  Brain
  Therapy
   Pharmacotherapy
   Radiotherapy
   Vaccination
  Risk Factors
  Esophageal
  Bladder
  Lung
  Rectal Cancer
  Pancreatic Cancer
  Bone Cancer
  Cervical Cancer
  Testicular Cancer
  Gastric Cancer
  Ovarian Cancer
  Nerve Tissue
  Renal Cell Carcinoma
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Therapy Channel
subscribe to Therapy newsletter

Latest Research : Cancer : Therapy

   DISCUSS   |   EMAIL   |   PRINT
Metallic Iron based Magnetic Nanoparticles for Potential New Cancer Treatment
Sep 8, 2005, 01:23, Reviewed by: Dr.

�We envision a potential for these materials to combine both detection and treatment into a single process� - Everett E. Carpenter, Ph.D.

 
Virginia Commonwealth University researchers have created highly magnetized nanoparticles based on metallic iron that could one day be used in a non-invasive therapy for cancer in which treatment would begin at the time of detection.

�We envision a potential for these materials to combine both detection and treatment into a single process,� said Everett E. Carpenter, Ph.D., an assistant professor of chemistry at VCU.

�Eventually, our goal is to use the scientific understanding of the growth mechanisms of these nanoparticles to develop materials for biomedical applications,� said Carpenter. �By engineering the magnetic properties of enhanced ferrites it is possible to develop materials for the treatment of various cancers, such as breast cancer.�

Carpenter and his team are working to determine how to best construct the core-shell structure and learn which shell materials are most ideal for biomedical applications such as magnetodynamic therapy (MDT), or as MRI contrast enhancement agents.

According to Carpenter, in the future it may be possible for a patient to be screened for breast cancer using MRI techniques with engineered enhanced ferrites as the MRI contrast agent. He said if a tumor is detected, the doctor could then increase the power to the MRI coils and localized heating would destroy the tumor region without damage to the surrounding healthy cells.

Another promising biomedical application is MDT, which employs magnetic nanoparticles that are coupled to the radio frequency of the MRI. This coupling converts the radio frequency into heat energy that kills the cancer cells. European researchers studying MDT have shown that nanoparticles are able to target tumor cells. Carpenter said that because the nanoparticles target tumor cells and are substantially smaller than human cells, only the very few tumor cells next to the nanoparticles are killed, which greatly minimizes damage to healthy cells.

�Our goal is to tailor the properties of the nanoparticles to make the use of MDT more universal,� said Carpenter. �The only thing slowing down the development of enhanced ferrites for 100 megahertz applications is a lack of understanding of the growth mechanisms and synthesis-property relationships of these nanoparticles.

�By studying the mechanism for the growth of the enhanced ferrites, it will be possible to create shells that help protect the metallic core from oxidation in biologically capable media,� he said.

Enhanced ferrites are a class of ferrites that are specially engineered to have enhanced magnetic or electrical properties and are created through the use of core-shell morphology. He said that in this approach the core can be a highly magnetic material like iron or iron alloys, while the shell can be a mixed metal ferrite with tailored resistivity.

�Ferrites (iron oxides) are used in many applications that require both a high magnetization and high electrical resistance; properties which are typically mutually exclusive,� said Carpenter. �These two properties are tied not only to the structure of the material but also to the way in which the material is synthesized and processed.�

Today, polymer encapsulated iron oxide particles are used in biomedical applications. However, Carpenter said that the high magnetization of the enhanced ferrite nanoparticles may potentially improve the absorption of the radio frequency, thereby providing better detection of tumor regions and the use of less MRI contrast re-agent.

In 2002, Carpenter invented a new material based on metallic iron. He said the magnetic power of the iron nanoparticles he created is 10 times greater than that of the currently available iron oxide nanoparticles, which translates to a substantial reduction in the amount of iron needed for imaging or therapy.
 

- Carpenter discussed his ongoing work of the synthesis and characterization of these functional magnetic nanoparticles for use in biomedical applications at the 2005 American Chemical Society National Meeting & Exposition in Washington, D.C., which began Aug. 28 and continues through Sept. 1.
 

Virginia Commonwealth University

 
Subscribe to Therapy Newsletter
E-mail Address:

 

This work is supported by a grant from the American Cancer Society and the VCU Department of Chemistry.

Related Therapy News

Genomic signatures to guide the use of chemotherapeutics
CDK2/FOXO1 as drug target to Prevent Tumors
Telomerase inhibitors may revolutionize cancer therapy
First ever shots of the cervical cancer vaccine administered in Queensland
Gleevec can be toxic to the heart
Anti-cancer possibilities seen for certain monoamine oxidase inhibitors
AS101 protects the testis from the effects of paclitaxel
Microbeam Radiation Therapy (MRT) Could Improve Cancer Treatment
Novel EGFR antibody mAb 806 targets tumors but not normal tissues
Oral chemotherapy option soon for cancer


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us