XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
  Breast
  Skin
  Blood
  Prostate
  Liver
  Colon
  Thyroid
  Endometrial
  Brain
  Therapy
  Risk Factors
  Esophageal
  Bladder
  Lung
  Rectal Cancer
  Pancreatic Cancer
  Bone Cancer
  Cervical Cancer
  Testicular Cancer
  Gastric Cancer
  Ovarian Cancer
  Nerve Tissue
  Renal Cell Carcinoma
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Cancer Channel
subscribe to Cancer newsletter

Latest Research : Cancer

   DISCUSS   |   EMAIL   |   PRINT
Interleukin-15 encourages CD8+ T cells to proliferate
Feb 19, 2006, 17:31, Reviewed by: Dr. Priya Saxena

"Those CD8+ T cells that can recognize such tumor antigens but evade thymic deletion are potentially harmful, and thus are held in check inside the body by mechanisms that make them tolerant of the protein even if it is encountered on a tumor cell"

 
Certain types of white blood cells assist the body in destroying cancerous tumors. Among these are CD8+ T cells. The T is for thymus, the gland near the base of the throat that both raises up and weeds out blood cells involved in immune responses.

One of the strategies being explored to eradicate established tumors is to increase the number of tumor-reactive T cells through immunization (often called a "cancer vaccine") or by growing large numbers of the patient's tumor-reactive T cells outside the body and giving them back to the patient, a method called adoptive immunotherapy.

CD8+T cells detect proteins called antigens and respond in fighting mode. If such antigens are detected on tumor cells, the CD8+ T cells punch holes in the tumor cells and destroy their contents. However, many tumor antigens are also found in normal body tissues. As a result, the thymus must get rid of most of the tumor-reactive T cells to keep the body from attacking itself.

"Those CD8+ T cells that can recognize such tumor antigens but evade thymic deletion are potentially harmful, and thus are held in check inside the body by mechanisms that make them tolerant of the protein even if it is encountered on a tumor cell," said Dr. Philip Greenberg, University of Washington (UW) professor of medicine and immunology, one of the co-authors of a Feb. 13, 2006, paper in Nature Medicine on new research in adoptive immunotherapy.

However, at times the system operates too well. Because tumor cells express higher levels of many of these antigens than do normal cells, some T cells can recognize the tumor cells and largely ignore the normal cells, but these CD8+ T cells are also held in check inside the body by mechanisms that build up their tolerance to the presence of tumor antigens. They become deficient in sending the signals that lead to tumor-cell killing.

"It is precisely these cells that might be most effective in tumor therapy, albeit with some potential toxicity," the paper said.

The researchers developed a transgenic mouse model in which the CD8+ T cells with receptors for a particular tumor antigen, also found in the mice's normal living tissue. The CD8+ T cells had become tolerant of the antigen. The CD8+ T cells were largely unresponsive, failing to proliferate or to secrete interleukin-2, a cellular product essential for maintaining a response to the tumor antigen.

However, the researchers learned through experimentation that the cells could be rescued from this tolerant state and encouraged to proliferate in laboratory beakers if they were mixed with interleukin-15. The cells are naturally exposed to lower doses of interleukin-15 inside the body, and this probably helps keep the cells alive despite their tolerant state. However, once these cells were induced to proliferate, they could be expanded to large numbers and were no longer tolerant of the tumor antigen.

It's not known precisely how proliferation rescues these cells, but the expanded tumor-reactive T cells were now effective in treating a disseminated form of leukemia in mice without damaging their livers. This suggests that the liver and other normal tissues expressing lower levels of the antigen may have their own protective mechanisms.

The research suggests that high-affinity CD8+ T cells are not necessarily deleted when they encounter the antigen as a normal protein, but rather may be rendered unable to expand under normal conditions, and that these CD8+ T cells can potentially be rescued and expanded for use in tumor immunotherapy.

The authors of the Nature Medicine article, "Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors," were Drs. Ryan M. Teague, Blythe D. Sather, Jillian A. Sacks, Maria Z. Haung, Michele I. Dossett, Junko Morimoto, Xiaoxio Tan, Claes Ohlen, and Philip D. Greenberg, all of the UW Department of Immunology; and Drs. Susan E. Sutton and Michael P. Cooke, of the Genomics Institute of the Novartis Research Foundation in San Diego. Teague, Dossett, Morimoto, Tan, Ohlen, and Greenberg also hold appointments in Seattle's Fred Hutchinson Cancer Research Center Program in Immunology. Greenberg's primary appointment is in the UW Department of Medicine.
 

- Nature Medicine article, "Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors,"
 

www.uwnews.org

 
Subscribe to Cancer Newsletter
E-mail Address:

 

The authors of the Nature Medicine article, "Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors," were Drs. Ryan M. Teague, Blythe D. Sather, Jillian A. Sacks, Maria Z. Haung, Michele I. Dossett, Junko Morimoto, Xiaoxio Tan, Claes Ohlen, and Philip D. Greenberg, all of the UW Department of Immunology; and Drs. Susan E. Sutton and Michael P. Cooke, of the Genomics Institute of the Novartis Research Foundation in San Diego. Teague, Dossett, Morimoto, Tan, Ohlen, and Greenberg also hold appointments in Seattle's Fred Hutchinson Cancer Research Center Program in Immunology. Greenberg's primary appointment is in the UW Department of Medicine.

Grants from the National Cancer Institute of the National Institutes of Health, and from the Leukemia and Lymphoma Society, supported this research. Teague is also a recipient of a Ruth I. Kirschstein National Research Service Award.

At Fred Hutchinson Cancer Research Center, interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose, and treat cancer, HIV/AIDS, and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge, and hope to their work and to the world. For more information, please visit http://www.fhcrc.org

UW Medicine includes the University of Washington School of Medicine, Harborview Medical Center, UW Medical Center, UW Medicine Neighborhood Clinics, and the UW's involvement in the Seattle Cancer Care Alliance. UW Medicine has major academic and service affiliations with Children's Hospital and Regional Medical Center, the Fred Hutchinson Cancer Research Center, and the Veteran's Affairs Medical Centers in Seattle and Boise. Consistently among the nation's top five recipients of federal funding for biomedical research, the School of Medicine has among its more than 1,700 regular faculty five Nobel Laureates, 39 members of the National Academy of Sciences, and 38 members of the Institute of Medicine. For more information about UW Medicine, please visit http://www.uwmedicine.org/


Related Cancer News

Gene Expression Profiling Not Quite Perfected in Predicting Lung Cancer Prognosis
Breast cancer chemotherapy may deterioration in cognitive function
I-ELCAP study: Lung cancer can be detected early with annual low-dose CT screening
Genomic signatures to guide the use of chemotherapeutics
Elderly Breast Cancer Patients May Be Under-Diagnosed And Under-Treated
Listening to the sound of skin cancer
Tissue Geometry Plays Crucial Role in Breast Cell Invasion
Regulatory Approval for New Cotara(R) Brain Cancer Clinical Trial
CDK2/FOXO1 as drug target to Prevent Tumors
Key to lung cancer chemotherapy resistance revealed


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us