XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
  Breast
  Skin
  Blood
  Prostate
  Liver
  Colon
  Thyroid
  Endometrial
  Brain
  Therapy
   Pharmacotherapy
   Radiotherapy
   Vaccination
  Risk Factors
  Esophageal
  Bladder
  Lung
  Rectal Cancer
  Pancreatic Cancer
  Bone Cancer
  Cervical Cancer
  Testicular Cancer
  Gastric Cancer
  Ovarian Cancer
  Nerve Tissue
  Renal Cell Carcinoma
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Therapy Channel
subscribe to Therapy newsletter

Latest Research : Cancer : Therapy

   DISCUSS   |   EMAIL   |   PRINT
Anti-cancer possibilities seen for certain monoamine oxidase inhibitors
Jun 24, 2006, 16:25, Reviewed by: Dr. Priya Saxena

"Our findings indicate this could be the case, and we are currently screening these drugs against many different types of cancer to answer that question."

 
In 2005, professor Ramin Shiekhattar, Ph.D., at The Wistar Institute and his colleagues reported details about an enzyme involved in appropriately repressing sets of neuronal genes in non-neuronal cells.

At the time, the scientists noted that the enzyme appeared to fit into the same extended enzyme family that includes monoamine oxidases, psychoactive enzymes that oxidize dopamine and norepinephrin. Inhibitors of these enzymes have long been used to treat depression, certain other psychiatric and emotional disorders, and Parkinson's disease.

Now, in a study published online today in the June 26 issue of Chemistry & Biology, Shiekhattar and his team show that the enzyme is itself a target for certain monoamine oxidase inhibitors used to treat depression. One member of this family of drugs in particular, called tranylcypromine (brand name Parnate�, manufactured by GlaxoSmithKline), was seen to inhibit the enzyme most strongly. The findings suggest that these anti-depressive drugs may have additional applications in other medically relevant areas.

For example, Shiekhattar notes that the enzyme studied exists in a complex with another type of gene-regulating enzyme that has been implicated in the development of cancer. Inhibitors of that second enzyme are currently in clinical trails as cancer therapies.

"Might particular monoamine oxidase inhibitors, currently used primarily to treat depression, have anti-cancer activity too?" Shiekhattar says. "Our findings indicate this could be the case, and we are currently screening these drugs against many different types of cancer to answer that question."

Because the primary role of the enzyme is to repress sets of related genes, many other areas of potential influence for the monoamine oxidase inhibitors are possible too, according to Shiekhattar. At the very least, he says, the drugs will likely prove to be useful laboratory tools for answering fundamental questions about genetic expression.

The enzyme in question is called BHC110/LSD1, and it was the first human histone demethylase identified. The enzyme's function is to remove methyl groups from small molecules called histones to modify them in ways that trigger gene repression. The second enzyme found in complex with BHC110/LSD1, acts in a similar way. Called a deacetylase, this enzyme removes acetyl groups from histones to repress gene expression.

In the body's scheme for safely storing genes away until needed, DNA is tightly looped around the histones, kept secure by enzymes similar to the ones studied by the Wistar team until made accessible by the activity of other enzymes responsible for gene expression. Eight histones comprise a nucleosome, and long strings of nucleosomes coil in turn into chromatin, the basic material of chromosomes.
 

- June 26 issue of Chemistry & Biology
 

www.wistar.org

 
Subscribe to Therapy Newsletter
E-mail Address:

 

The lead author on the Chemistry & Biology study is Min Gyu Lee. Christopher Wynder is a coauthor. Additional coauthors at the University of Pennsylvania School of Medicine are Dawn M. Schmidt and Dewey G. McCafferty. Senior author Ramin Shiekhattar is a professor in two programs at Wistar, the gene expression and regulation program and molecular and cellular oncogenesis program. Support for the research was provided by the National Institutes of Health.

The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases, such as AIDS and influenza. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Center focused on basic and translational research. Discoveries at Wistar have led to the creation of vaccines for such diseases as rabies, rubella, and rotavirus; significant insights into the mechanisms of skin, brain, breast, lung, and prostate cancers; and the development of monoclonal antibodies and other important research technologies and tools.


Related Therapy News

Genomic signatures to guide the use of chemotherapeutics
CDK2/FOXO1 as drug target to Prevent Tumors
Telomerase inhibitors may revolutionize cancer therapy
First ever shots of the cervical cancer vaccine administered in Queensland
Gleevec can be toxic to the heart
Anti-cancer possibilities seen for certain monoamine oxidase inhibitors
AS101 protects the testis from the effects of paclitaxel
Microbeam Radiation Therapy (MRT) Could Improve Cancer Treatment
Novel EGFR antibody mAb 806 targets tumors but not normal tissues
Oral chemotherapy option soon for cancer


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us