XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
  Breast
  Skin
  Blood
  Prostate
  Liver
  Colon
  Thyroid
  Endometrial
  Brain
  Therapy
  Risk Factors
  Esophageal
  Bladder
  Lung
  Rectal Cancer
  Pancreatic Cancer
  Bone Cancer
  Cervical Cancer
  Testicular Cancer
  Gastric Cancer
  Ovarian Cancer
  Nerve Tissue
  Renal Cell Carcinoma
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Aug 19th, 2006 - 22:18:38

Esophageal Channel
subscribe to Esophageal newsletter

Latest Research : Cancer : Esophageal

   DISCUSS   |   EMAIL   |   PRINT
How acid reflux leads to esophageal cancer
Aug 17, 2006, 16:00, Reviewed by: Dr. Rashmi Yadav

It was previously known that levels of ROS are increased in Barrett's Esophagus and in esophageal cancer and that ROS may play an important role in the development of cancer. However, the sources of ROS had not been defined. Researchers showed that the production of ROS begins with NOX5. When this enzyme was removed, acid-induced production of hydrogen peroxide was reduced, confirming that NOX5 is responsible. Also, when calcium was removed, the prevalence of NOX5 decreased, along with the production of hydrogen peroxide.

 
A particular enzyme is significantly higher in cancer cells that have been exposed to acid, leading to the overproduction of hydrogen peroxide, and offering a possible explanation for how acid reflux may lead to cancer of the esophagus, according to a recent study in the Journal of Biological Chemistry.

The study found that the enzyme NOX5-S is affected by exposure to acid and that it produces stress on cells, activating genes that lead to DNA damage. For the first time, researchers have outlined the signaling pathway from cells damaged by acid, to the progression of esophageal cancer. They believe the same process may happen in the body when cells are exposed to acid reflux.

"The role of acid is controversial. But we show that by exposing cells to acid for short periods of time, that affects a particular enzyme, triggering a chain of events that possibly leads to cancer of the esophagus. Now that we have a better understanding of the signaling pathway, we can possibly identify who is at risk of developing cancer by determining the levels of this enzyme," says senior author Weibiao Cao, a researcher at Rhode Island Hospital and an assistant professor of medicine and surgery at Brown Medical School.

The study looked at human cancer cells and biopsies from patients with Barrett's esophagus (BE), a condition where cells in the esophagus have been altered by gastroesophageal reflux disease (GERD), or acid reflux. Acid reflux is believed to be a major risk factor for cancer in people with Barrett's esophagus.

However, the mechanisms of the progression to cancer have not been fully understood. In this study, researchers found that the enzyme NOX5-S is significantly higher in Barrett's esophageal tissues, which creates a pre-cancerous condition, as well as in esophageal cancer. Acid exposure leads to an increase in calcium in Barrett's esophageal cancer cells, thus activating a cAMP response element binding protein (CREB). This causes the activation of NOX5-S and overproduction of reactive oxygen species (ROS), thereby increasing cell growth and decreasing cell death � optimal conditions for cancer to develop.

It was previously known that levels of ROS are increased in Barrett's Esophagus and in esophageal cancer and that ROS may play an important role in the development of cancer. However, the sources of ROS had not been defined. Researchers showed that the production of ROS begins with NOX5. When this enzyme was removed, acid-induced production of hydrogen peroxide was reduced, confirming that NOX5 is responsible. Also, when calcium was removed, the prevalence of NOX5 decreased, along with the production of hydrogen peroxide.

"Now that we know the sequence, we may be able to slow down or even block the progression of cancer by blocking these different steps," Cao says. "This may have therapeutic value if we can block this particular enzyme, NOX5, in Barrett's esophageal cancer cells."

Incidences of esophageal cancer related to BE have increased over the past three decades at a rate exceeding that of any other cancer in the past 10 years. Patients have a poor prognosis, with a median survival of less than 18 months after diagnosis. The five-year survival rate is less than 20 percent after surgery on operable tumors. The major risk factor is gastroesophageal reflux disease (GERD) complicated by Barrett's esophagus.

Approximately 10 percent of GERD patients develop Barrett's esophagus. A middle-aged person with BE for 20 years or more has a 10 to 20 percent lifetime risk of developing esophageal cancer, which is similar to the risk of lung cancer among heavy smokers or of liver cancer among chronic hepatitis-B virus carriers.

In order to prevent the progression, it may be necessary to increase treatment with proton pump inhibitors in patients with Barrett's Esophagus, the authors write.

"Elucidating the pathways leading from acid exposure to increased ROS production, increased proliferation and decreased apoptosis may provide a number of potentially useful therapeutic targets," the authors write.
 

- Journal of Biological Chemistry
 

www.rhodeislandhospital.org

 
Subscribe to Esophageal Newsletter
E-mail Address:

 

Other authors on the paper are: Xiaoying Fu, Jose Behar and Jack Wands, all of Rhode Island Hospital and Brown Medical School; David G. Beer of the University of Michigan Medical School; and David Lambeth of Emory University School of Medicine.

This study was supported in part by the National Institutes of Health COBRE grant and by a grant from the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health.

Founded in 1863, Rhode Island Hospital (www.rhodeislandhospital.org) is a private, not-for-profit hospital and is the largest teaching hospital of Brown Medical School. A major trauma center for southeastern New England, the hospital is dedicated to being on the cutting edge of medicine and research. Rhode Island Hospital ranks 13th among independent hospitals who receive funding from the National Institutes of Health, with research awards of more than $27 million annually. Many of its physicians are recognized as leaders in their respective fields of oncology, cardiology, orthopedics and minimally invasive surgery. The hospital's pediatrics wing, Hasbro Children's Hospital, has pioneered numerous procedures and is at the forefront of fetal surgery, orthopedics and pediatric neurosurgery.


Related Esophageal News

How acid reflux leads to esophageal cancer
Linking esophageal cancer with carbonated soft drinks is groundless
Psychiatric disorders delay diagnosis of esophageal cancer
Women, Overweight Survive Longer with Esophageal and Stomach Cancer
Premature Birth Significantly Increases Risk of Esophageal Cancer
Zinc deficiency linked to fatal esophageal carcinoma


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us