XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
 Latest Research
 Cancer
  Breast
  Skin
   Melanoma
  Blood
  Prostate
  Liver
  Colon
  Thyroid
  Endometrial
  Brain
  Therapy
  Risk Factors
  Esophageal
  Bladder
  Lung
  Rectal Cancer
  Pancreatic Cancer
  Bone Cancer
  Cervical Cancer
  Testicular Cancer
  Gastric Cancer
  Ovarian Cancer
  Nerve Tissue
  Renal Cell Carcinoma
 Psychiatry
 Genetics
 Surgery
 Aging
 Ophthalmology
 Gynaecology
 Neurosciences
 Pharmacology
 Cardiology
 Obstetrics
 Infectious Diseases
 Respiratory Medicine
 Pathology
 Endocrinology
 Immunology
 Nephrology
 Gastroenterology
 Biotechnology
 Radiology
 Dermatology
 Microbiology
 Haematology
 Dental
 ENT
 Environment
 Embryology
 Orthopedics
 Metabolism
 Anaethesia
 Paediatrics
 Public Health
 Urology
 Musculoskeletal
 Clinical Trials
 Physiology
 Biochemistry
 Cytology
 Traumatology
 Rheumatology
 
 Medical News
 Health
 Opinion
 Healthcare
 Professionals
 Launch
 Awards & Prizes
 
 Careers
 Medical
 Nursing
 Dental
 
 Special Topics
 Euthanasia
 Ethics
 Evolution
 Odd Medical News
 Feature
 
 World News
 Tsunami
 Epidemics
 Climate
 Business
Search

Last Updated: Nov 17th, 2006 - 22:35:04

Skin Channel
subscribe to Skin newsletter

Latest Research : Cancer : Skin

   DISCUSS   |   EMAIL   |   PRINT
Collagen VII Protein Implicated in Skin Cancer Spread
Mar 18, 2005, 23:14, Reviewed by: Dr.

When the group treated the mice with the collagen VII-blocking antibody, the skin cancer failed to spread, though the cancer remained.

 
A protein that normally helps hold the skin intact is also needed by skin cancer cells as they spread to other regions of the body, researchers at the Stanford University School of Medicine have discovered. Identifying this protein's role opens the door for stopping the spread of this deadly cancer-the second most common cancer type in the United States.

The finding came about because roughly two-thirds of children with a blistering skin disorder called recessive dystrophic epidermolysis bullosa, or RDEB - caused by a mutation that leads to an altered or missing collagen VII protein - develop a type of skin cancer called squamous cell carcinoma. This led Paul Khavari, MD, PhD, the Carl J. Herzog Professor in Dermatology, to suspect that the protein had something to do with cancer formation.

What Khavari and postdoctoral scholar Susana Ortiz-Urda, MD, PhD, found is that a fragment of collagen VII is required for the skin cancer cells to break free from the neighboring skin tissue and spread - a step that turns an otherwise benign tumor into a killer. "When we blocked this sequence we also blocked the cancer from spreading," said Khavari, who is also chief of dermatology at the Veterans Affairs Palo Alto Health Care System.

The group found this sequence by studying skin samples from 12 children with RDEB. They used laboratory tools to activate molecular switches that normally turn skin cells cancerous. What they found was surprising. Four of the 12 samples never turned cancerous, no matter what cancer-promoting molecular switches the researchers had flicked. The remaining eight samples became cancerous much like normal skin cells that the researchers had studied previously.

It turns out that the difference in cancer formation had to do with the type of alteration in the children's collagen VII gene. The cancer-resistant skin cells were from children who lacked the collagen VII protein altogether. The remaining cancer-prone samples all contained just a fragment of the protein. Both types of mutations leave the children equally prone to RDEB, but only those cells that contained a portion of the collagen VII protein were susceptible to cancer.

Khavari and his group deduced that this collagen VII protein fragment might be necessary to allow cancer to form. They proved this by adding the fragment to RDEB cells that lacked it-an intervention that restored cancer-forming ability.

Further proof came from work in normal skin cells. The group blocked that protein fragment using an antibody and once again tried to induce the cells to become cancerous. They failed. Without that fragment, the cancer could not spread.

Khavari noted that cells behave differently when they are in a lab dish versus growing as part of an animal. With that in mind, he and his group transplanted some human skin cancer cells onto mice. As expected, those cells formed skin cancers that would kill the mouse if left unchecked.

But when the group treated the mice with the collagen VII-blocking antibody, the skin cancer failed to spread, though the cancer remained. "This cancer isn't deadly unless it spreads," Khavari said.

What's more, it appears that the antibody blocks only the cancer-spreading aspect of collagen VII. The protein is still able to perform its normal job of keeping the skin intact.

Khavari stressed that all this work took place using human cells. "Cancer processes are very different in humans and mice," Khavari said. If they'd found these results in mouse cells, the group would still need to prove that the fragment is relevant for humans. By studying human cells, the group has already shown the fragment's relevance-now it's just a matter of using that knowledge to treat patients.

Khavari said he could imagine a drug that blocks the collagen VII fragment being used pre-emptively to prevent skin cancer from spreading in people who are highly susceptible, such as children with RDEB or people who are chronically immune suppressed due to organ transplantation.

Despite this optimism, Khavari cautions that many further experiments are needed before this work could lead to any cancer treatment.
 

- The work, which appears in the March 18 issue of Science, is the first published research implicating the protein, collagen VII, in cancer.
 

http://med-www.stanford.edu/MedCenter/MedSchool/

 
Subscribe to Skin Newsletter
E-mail Address:

 

The work was sponsored in part by the Department of Veterans Affairs, the Epidermolysis Bullosa Medical Research Foundation, a Schroedinger grant from the FWF of Austria and grants from the National Institutes of Health.

Other Stanford researchers who participated in the study include graduate students John Garcia and Cheryl Green; research associates Lei Chen and Qun Lin; postdoctoral scholars Dallas Veitch and Hyangkyu Lee, and M. Peter Marinkovich, MD, associate professor of dermatology.

Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children's Hospital at Stanford. For more information, please visit the Web site of the medical center's Office of Communication & Public Affairs at http://mednews.stanford.edu.


Related Skin News

Listening to the sound of skin cancer
Malignant melanoma cells secrete a potent embryonic growth factor
Fatty food does not appear to increase the risk of skin cancer
New mouse model technology in Melanoma vaccine tool-box
Malignant melanoma cells reprogrammed !
Gli proteins and tumor latency in skin cancer
New option for patients with metastatic melanoma
Positive family history increases risk of multiple primary melanomas
Skin cancer risk higher in Kidney transplant patients
How some cells repair DNA damage by UV radiation


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us