RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
  Bladder
  Blood
  Bone Cancer
  Brain
  Breast Cancer
  Carcinogens
  Cervical Cancer
  Colon
  Endometrial
  Esophageal
  Gastric Cancer
  Liver Cancer
  Lung
  Nerve Tissue
  Ovarian Cancer
  Pancreatic Cancer
  Prostate Cancer
  Rectal Cancer
  Renal Cell Carcinoma
  Risk Factors
  Skin
  Testicular Cancer
  Therapy
  Thyroid
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Operative Neurosurgery Cervical Cancer Channel

subscribe to Cervical Cancer newsletter
Latest Research : Cancer : Cervical Cancer

   EMAIL   |   PRINT
Novel technique to remove "inoperable" cervical spinal tumours

Nov 6, 2005 - 11:23:00 AM
"We are treating patients with this technique who were told by physicians that nothing more could be done," said Ames. "The next step is to train other surgeons in the technique so it is accessible to patients throughout the country."

 
[RxPG] UCSF surgeons are using a novel technique to remove tumors from the cervical region of the spine that were previously thought "inoperable."

Called a lateral paramedian transpedicular approach, the technique uses advances in spinal instrumentation and reconstructive strategies to provide a direct approach to the removal of cervical spinal tumors with minimal, or no, neural manipulation.

The procedure is reported in the November issue of Operative Neurosurgery. UCSF is the only medical institution in the United States where patients can undergo this surgery.

Developed by neurosurgeon Christopher Ames, MD, co-director of neurospinal disorders and director of the Spinal Biomechanics and Spinal Neuronavigation Laboratory at UCSF Medical Center, the surgery uses standard and innovative devices to first remove and then reconstruct portions of the cervical spine in order to access tumors. Once the bone is removed, surgeons have a direct line of sight to the tumor and are able to remove it in its entirety without having to move or manipulate the spinal cord.

After the tumor is removed, surgeons immediately rebuild the spine with artificial pedicle screws, a reconstruction technique also developed by Ames. The technique is particularly useful in cases in which the tumor is located in the middle of the spinal canal and attached to the lining of the spine. These types of tumors include meningiomas, neurofibromas and exophytic astrocytomas.

Patient Stacey Hall recently underwent surgery to remove a neurofibroma, a usually benign tumor of the peripheral nerves. Hall's tumor caused her skin to be acutely sensitive to touch, her hands to experience numbness, and her legs to collapse from under her at times. "The damage was so severe, the slightest breeze against my skin caused me excruciating pain," said Hall. "The first thing I noticed after my surgery was that my skin no longer hurt for the first time in more than a year."

Most of the surgeries to date have been done on patients with conditions similar to Hall. Neurofibromas can occur as a sporadic condition or as a genetic disorder such as neurofibromatosis. While a common type of spinal tumor, neurofibromas are challenging lesions to approach surgically, according to Ames. Found at the base of the skull on or near the spine, the tumors often sit just below the brain stem and press against the spinal cord as they grow.

Some tumors span several vertebral levels. In time, the pressure against the spinal cord can cause pain, numbness and loss of mobility in the hands, arms and legs. If left untreated, patients can become paralyzed. Because of the proximity to sensitive anatomy including the spinal cord, pharynx, nerves, and major blood vessels, surgeons often refuse to operate for fear of causing irreversible nerve damage, paralysis and even death, Ames noted, and as a result, patients presenting with extensive intradural tumors are often left without hope.

"We are treating patients with this technique who were told by physicians that nothing more could be done," said Ames. "The next step is to train other surgeons in the technique so it is accessible to patients throughout the country."







Publication: University of California - San Francisco
On the web: www.ucsf.edu 

Advertise in this space for $10 per month. Contact us today.


Related Cervical Cancer News
New vaccine prevents cervical cancer in teens
Topotecan for Late-Stage Cervical Cancer Approved
New HPV vaccine is 100 percent effective
Vaccine for Cervical Cancer Approved in US - Overview
Quadrivalent Human Papillomavirus (HPV) Recombinant Vaccine Approved by FDA
HPV Vaccination: Predicting Its Effect on Cervical Cancer Rates
HPV testing is more sensitive for screening cervical cancer
Community's income status predicts cervical screening rates
Novel technique to remove "inoperable" cervical spinal tumours
HPV Vaccine Prevented 100 Percent of Cervical Pre-cancers

Subscribe to Cervical Cancer Newsletter

Enter your email address:


 Additional information about the news article
UCSF is a leading university that consistently defines health care worldwide by conducting advanced biomedical research, educating graduate students in the life sciences, and providing complex patient care.

Ames specializes in spinal reconstructive surgery for trauma, tumors and degenerative disease. His research focuses on new techniques for computer-guided, minimally invasive instrumentation and development of resorbable materials for spine stabilization and growth factor delivery. He is the first surgeon in California to do a percutaneous pre-sacral fusion, of which there have been less than 15 in the country. Ames completed a complex spine fellowship at the Barrow Neurological Institute in Phoenix, Arizona.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)