XML Feed for RxPG News   Add RxPG News Headlines to My Yahoo!   Javascript Syndication for RxPG News

Research Health World General
 
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
  Anorexia Nervosa
  Anxiety
  Bulimia
  CFS
  Child Psychiatry
  Depression
  Forensic Psychiatry
  Learning-Disabilities
  Mood Disorders
  Neuropsychiatry
  Peri-Natal Psychiatry
  Personality Disorders
  Psychology
  Psychoses
  Psychotherapy
  Sleep Disorders
  Substance Abuse
   Alcohol
   Amphetamine
   Cannabis
   Cocaine
   Opiates
   Smoking
  Suicide
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate
Search

Last Updated: Nov 18, 2006 - 1:55:25 PM

Cocaine Channel
subscribe to Cocaine newsletter

Latest Research : Psychiatry : Substance Abuse : Cocaine

   DISCUSS   |   EMAIL   |   PRINT
Transcriptional activation is a key molecular mechanism in cocaine addiction
Oct 20, 2005 - 4:05:00 PM, Reviewed by: Dr.

The researchers found that the histone modifications affecting BDNF and Cdk5 persisted for long periods. The researchers commented that "To our knowledge, these are the most long-lived examples of drug-induced chromatin remodeling in brain published to date."

 
Researchers are now understanding in greater detail the molecular machinery underlying the short-term brain changes that produce the high of cocaine, as well as the longer-term changes behind addiction. Their findings offer hope for targeted drugs that can short-circuit that addiction machinery.

In the October 20, 2005, issue of Neuron, researchers led by Eric J. Nestler and Arvind Kumar of The University of Texas Southwestern Medical Center have pinpointed a key molecular mechanism by which genes are switched on in the brain that govern both short-term and long-term effects of cocaine. Such activation is called transcriptional activation because it induces the gene to begin making copies of itself into messenger RNA that trigger protein production.

In their experiments, the researchers studied a process called "chromatin remodeling"--in which the histone proteins enfolding genes are chemically altered to render the genes active. They administered to rats both short-term, acute cocaine doses and long-term, chronic cocaine and analyzed the alteration of the histones affecting specific genes involved in cocaine response in the brain.

In their studies, they used an analytical technique called "chromatin immunoprecipitation assays" to measure the effects of cocaine on histone proteins. This technique, they emphasized, makes it possible "to study such transcriptional mechanisms in the brain in vivo and understand, with increasing complexity, how chronic cocaine administration leads to the long-term regulation of its target genes."

The researchers found that giving the rats acute doses of cocaine induced histone modifications that activated a gene called cFos, which is an important regulator of many other genes. However, this gene was desensitized by chronic cocaine.

In contrast, they found, histone modifications activated two other genes, BDNF and Cdk5, only during chronic cocaine administration. Their findings, they wrote, "directly implicate these mechanisms in cocaine-induced neural and behavioral plasticity."

The Cdk5 gene is particularly interesting, they wrote, because it has been implicated in the long-term rewiring of brain circuitry in the striatum, a brain region known to be important in cocaine's behavioral effects.

The researchers found that the histone modifications affecting BDNF and Cdk5 persisted for long periods. The researchers commented that "To our knowledge, these are the most long-lived examples of drug-induced chromatin remodeling in brain published to date."

They also wrote that "Such long-lived changes in chromatin remodeling might be one of the crucial mechanisms for cocaine-induced neuroadaptations in striatum, which mediate the neural and behavioral plasticity that underlies cocaine addiction."

The researchers also performed behavioral studies on the rats, to demonstrate the central role of histone modifications in cocaine's effects. They found that, when given drugs that enhance the histone modification, rats showed a greater reward response from cocaine. In contrast, when histone modification was damped using drugs, the animals showed decreased rewarding effects.

Of their findings, the researchers concluded that "Such regulation provides a new layer of complexity, at the molecular level, through which cocaine produces neural and behavioral plasticity, and reveals mechanisms for the treatment of cocaine addiction that involve interfering with this plasticity."
 

- Kumar et al.: "Chromatin Remodeling is a Key Mechanism Underlying Cocaine-Induced Plasticity in Striatum." Publishing in Neuron, Vol. 48, 303–314, October 20, 2005, DOI 10.1016/j.neuron.2005.09.023,
 

www.neuron.org

 
Subscribe to Cocaine Newsletter
E-mail Address:

 

The researchers include Arvind Kumar, Kwang-Ho Choi, William Renthal, Nadia M. Tsankova, David E. H. Theobald, Hoang-Trang Truong, Scott J. Russo, Quincey LaPlant, Teresa S. Sasaki, Kimberly N. Whistler, David W. Self, and Eric J. Nestler of The University of Texas Southwestern Medical Center; and Rachael L. Neve of Harvard Medical School and McLean Hospital. This work was supported by grants from the NIDA and NIMH.

Related Cocaine News
Scientists design simple dipstick test for cocaine, other drugs
Biochemical signature of cocaine craving revealed
Eliminating the rewarding effect of cocaine by genetic alterations
Prenatal cocaine exposure not linked to bad behavior in kids
Strength of cocaine cravings linked to brain response
Cocaine use linked to brain hemmorhage in young adults
Transcriptional activation is a key molecular mechanism in cocaine addiction
Disrupting reconsolidation of the cocaine-related memory


For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 

© Copyright 2004 onwards by RxPG Medical Solutions Private Limited
Contact Us