RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
  AIDS
  Anthrax
  Dengue
  Ebola
  HCV
  Influenza
  Leishmaniasis
  Malaria
  MRSA
  Mumps
  Pertussis
  Prion Diseases
   CJD
  SARS
  Shigella
  Small Pox
  Tuberculosis
 Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
CJD Channel

subscribe to CJD newsletter
Latest Research : Infectious Diseases : Prion Diseases : CJD

   EMAIL   |   PRINT
Blocking apoptosis fails to stop prion damage in mouse brains

Dec 23, 2004 - 1:07:00 PM

 
[RxPG] Researchers knew that prions, the misfolded proteins that cause mad cow disease and other brain disorders, were killing off a class of important brain cells in a transgenic mouse model. But when they found a way to rescue those cells, they were astonished to discover the mice still became sick.

Now they believe previous efforts to find the beginnings of the mouse disorder may have been focused on the wrong part of the brain cell and are plotting new directions for research.

In a study that appears in the Jan. 1 issue of the Proceedings of the National Academy of Sciences, scientists report evidence that clinical symptoms in the mice are produced by damage to synapses, the areas where nerve cell branches come together for communication.

"This could have important therapeutic implications," says senior author David Harris, M.D, Ph.D, professor of cell biology and physiology at Washington University School of Medicine in St. Louis. "There's a great deal of effort being put into developing treatments for neurodegenerative disorders that would inhibit neuron death. Our results suggest that if we just prevent cell death without doing something to maintain the functionality of the synapse, patients may still get sick."

Harris notes that the findings also link prion diseases, which are relatively rare, to more common neurodegenerative disorders like Alzheimer's disease, where recent evidence has also elevated the importance of damage to synapses.

Because of the bizarre methods by which prions spread and cause disease, they have only recently gained widespread acceptance as the source of several disorders that rapidly devastate the brains of humans, cows, deer and sheep.

In these disorders, the most infamous of which is mad cow disease, copies of a normal brain protein, PrP, fold themselves into abnormal shapes, dramatically altering the proteins' properties. Genetic mutations can increase chances that copies of the PrP protein will misfold into the prion form. Proximity to prions also can increase the chances that normally folded copies of PrP will misfold and become prions.

Human prion disorders can be caused by inherited mutations, through contamination during a medical procedure or, in very rare instances, from consumption of infected animals. In addition, some "spontaneous" cases of human prion disease currently can't be tracked to any genetic or environmental cause. Human prion disorders have no treatment and are fatal in months to several years.

Harris has created nearly 50 genetically modified lines of mice to study prion diseases. The mouse model that he and his colleagues used for the most recent study has a mutation in PrP that causes it to misfold, leading to difficulty in movement and other symptoms similar to those seen in human prion diseases.

Scientists previously found that the mouse mutation kills off a class of brain cells known as cerebellar granule neurons. They form an important part of the structure of the cerebellum, an area in the back of the brain involved in motor coordination and other functions.

"The die-off is very dramatic--it's massive and occurs at roughly the same time among all the granule neurons, and it leads to visible shrinkage of the cerebellum," Harris says. "That had us thinking these cellular deaths had to be related to the onset of symptoms."

To further understand what was happening, Harris began to look into proteins involved in a cellular suicide process called apoptosis. He became interested in a protein called Bax that other scientists had previously identified as a trigger of apoptosis in central nervous system cells.

Harris and his colleagues crossbred the mouse prion model with a line of mice where the Bax gene had been deleted. As they expected, cerebellar granule neurons survived in mice that both had the prion mutation and lacked the Bax gene.

"That's important by itself, because it tells us that Bax is involved in the cell death pathway," Harris notes. "There are other options for self-destruction that the cells could have been using, but now we know that the Bax pathway is the one to focus on."

Although the neurons survived, the clinical symptoms persisted. Microscopic examinations of the brains of mice from the original prion model had previously revealed clumps of prion protein in brain areas heavy with synapses, so researchers decided to look at the health of synapses in the new crossbred line of mice.

A test for synaptophysin, a protein found at synapses, revealed widespread loss of synapses in the new line of mice.

"The neurons were still alive, but their connections were damaged or missing," Harris says. "This discovery really has changed the way we think about future directions for our work."

According to Harris, future research will include studies of how prions damage the synapse and whether the clumps of prion protein are involved in that damage.



Publication: Jan. 1 issue of the Proceedings of the National Academy of Sciences

Advertise in this space for $10 per month. Contact us today.


Related CJD News
Seven UK cases of Creutzfeldt-Jakob disease associated with transplanted human tissue
First Successful Blood Test for 'Mad Cow' Disease Prions
Blocking apoptosis fails to stop prion damage in mouse brains
Mad cow prions piggyback on iron-storing proteins after surviving digestive juices
Testing Transepithelial Prion Protein Transport In Vitro

Subscribe to CJD Newsletter

Enter your email address:


 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)