RxPG News Feed for RxPG News

Medical Research Health Special Topics World
  Home
 
   Health
 Aging
 Asian Health
 Events
 Fitness
 Food & Nutrition
 Happiness
 Men's Health
 Mental Health
 Occupational Health
 Parenting
 Public Health
 Sleep Hygiene
 Women's Health
 
   Healthcare
 Africa
 Australia
 Canada Healthcare
 China Healthcare
 India Healthcare
 New Zealand
 South Africa
 UK
 USA
 World Healthcare
 
   Latest Research
 Aging
 Alternative Medicine
 Anaethesia
 Biochemistry
 Biotechnology
 Cancer
 Cardiology
 Clinical Trials
 Cytology
 Dental
 Dermatology
 Embryology
 Endocrinology
 ENT
 Environment
 Epidemiology
 Gastroenterology
 Genetics
 Gynaecology
 Haematology
 Immunology
 Infectious Diseases
 Medicine
  Emergency Medicine
  Internal Medicine
  Respiratory Medicine
   Asthma
   COPD
   Cystic Fibrosis
  Sexual Medicine
 Metabolism
 Microbiology
 Musculoskeletal
 Nephrology
 Neurosciences
 Obstetrics
 Ophthalmology
 Orthopedics
 Paediatrics
 Pathology
 Pharmacology
 Physiology
 Physiotherapy
 Psychiatry
 Radiology
 Rheumatology
 Sports Medicine
 Surgery
 Toxicology
 Urology
 
   Medical News
 Awards & Prizes
 Epidemics
 Launch
 Opinion
 Professionals
 
   Special Topics
 Ethics
 Euthanasia
 Evolution
 Feature
 Odd Medical News
 Climate

Last Updated: Oct 11, 2012 - 10:22:56 PM
Cystic Fibrosis Channel

subscribe to Cystic Fibrosis newsletter
Latest Research : Medicine : Respiratory Medicine : Cystic Fibrosis

   EMAIL   |   PRINT
Genetic variations influence cystic fibrosis' severity

Oct 8, 2005 - 5:24:00 AM
"This study is especially important in the field of genetic modifiers, because we had enough patients -- over 1,300 -- and a robust study design to assure that our observation is likely correct. That is in contrast to much of the previous work in this area where the number of subjects was usually too small to be conclusive."

 
[RxPG] Subtle differences in other genes -- besides the defective gene known to cause the illness cystic fibrosis -- can significantly modify the inherited disease's severity, a large new multi-center national study has concluded.

The study, led by University of North Carolina at Chapel Hill and Case Western Reserve University researchers, for the first time shows that particular versions of the transforming growth factor beta 1 (TGFb1) gene are largely responsible for how badly the illness affects patients' lungs.

A report on the findings appears in the Oct. 6 issue of the New England Journal of Medicine.

"As this gene is one of about 30,000 genes in our bodies, its identification as a modifier of the CF lung disease allows us a specific target to focus on for improving CF therapy," said Dr. Mitchell L. Drumm, associate professor of pediatrics and genetics at Case. "As we better understand its function in lung disease, we hope it will allow us to design better and more specific therapies. Because other researchers have found a similar effect of this gene in asthma, the implications likely extend to other disorders affecting the lungs as well."

More than 50 hospitals and medical centers and scores of physicians across the United States and Canada participated in the investigation, which was actually two closely related studies with separate groups of patients. Findings were essentially the same for both, according to principal investigator Dr. Michael R. Knowles, professor of medicine at the UNC School of Medicine.

"This study is especially important in the field of genetic modifiers, because we had enough patients -- over 1,300 -- and a robust study design to assure that our observation is likely correct," Knowles said. "That is in contrast to much of the previous work in this area where the number of subjects was usually too small to be conclusive.

"The observation has tremendous implications about the future for prognosis and potential new therapies in CF," he said. "We are on the verge in the next two or three years of being able to test for other such genetic variants across the entire human genome. Our hope is to be able to identify most of the important gene modifiers in CF so that they can be used for prognosis, the identification of novel therapeutic targets and perhaps even directing therapy in an individual patients toward different types of adverse gene modifiers."

Initially, the study involved 808 cystic fibrosis patients who had inherited an altered form of a gene known as delta F508 from both parents. The second study involved 498 people with the condition. By measuring the volume of air when patients' exhaled strongly into a machine, researchers determined how severe each subject's lung disease was.

Scientists then correlated patients' level of illness against various genetic mutations and found that variants of a gene known as TGFb1 were associated with worse disease. The findings appear to exonerate certain other previously suspected mutations.

Besides Drumm and Knowles, authors of the report include Drs. Fred A. Wright and Fei Zou, associate professor and assistant professor of biostatistics, respectively, at the UNC School of Public Health, and, at Case, Drs. Mark D. Schluchter and Michael Konstan, professors of pediatrics; and Dr. Katrina Goddard, associate professor of epidemiology and biostatistics. Thirteen other scientists and clinicians also contributed to the work and were listed as co-authors.

In an accompanying editorial, Drs. Christina K. Haston and Thomas J. Hudson of McGill University in Montreal praised the new study.

"There are many lessons about modifier genes to be extrapolated from this study, starting with recognition of the tremendous importance of the study design," Haston and Hudson wrote.

Among its strengths, they said, were its large size -- which is essential for such studies if they are to be useful -- that it focused on a single class of gene variation and that it took into account numerous possible confounders such as sex, other illnesses like asthmas, enrollment sites, associated diseases and infections.

"There are likely a number of gene modifiers in CF and other diseases, and this current paper describes one of the first robust examples," Knowles said. "Some CF patients may do worse because of 'severe inflammation' genes, whereas others may do worse because of differences in mucus genes. Still others might because of their growth and metabolism genes, etc... Thus, therapy might need to be targeted to a particular area or areas in individual patients. This is important not only for CF, but for other lung diseases as well because gene modifiers we discover in CF will be seen in other diseases, and there are already examples of that."



Publication: A report on the findings appears in the Oct. 6 issue of the New England Journal of Medicine.
On the web: www.unc.edu 

Advertise in this space for $10 per month. Contact us today.


Related Cystic Fibrosis News
Cystic fibrosis-related diabetes is due to functional abnormalities in beta cells
No evidence for inhaled corticosteroids efficacy in cystic fibrosis
Hcp1 plays a critical role in cystic fibrosis infection
Cystic fibrosis research could benefit from multi-functional sensing tool
Loss of CFTR-mediated fluid secretion is the culprit in cystic fibrosis
New treatment for cystic fibrosis patients
Genetic variations influence cystic fibrosis' severity
How to design a better drug to treat cystic fibrosis
FDA Gives Clearance to the First Cystic Fibrosis DNA test

Subscribe to Cystic Fibrosis Newsletter

Enter your email address:


 Additional information about the news article
Support for the investigations came from the Cystic Fibrosis Foundation, the National Institutes of Health, Genome Canada and the Canadian Cystic Fibrosis Foundation.

Additional support came from the UNC School of Medicine's genetics department and Dr. William F. Marzluff, executive associate dean for research at the medical school and professor of biochemistry and biophysics.
 Feedback
For any corrections of factual information, to contact the editors or to send any medical news or health news press releases, use feedback form

Top of Page

 
Contact us

RxPG Online

Nerve

 

    Full Text RSS

© All rights reserved by RxPG Medical Solutions Private Limited (India)